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Abstract
The 2023 Soccer Prediction Challenge invited the machine learning community to develop 
innovative methods to predict the outcomes of 736 future soccer matches. The Challenge 
included two tasks. Task 1 was to forecast the exact match score, i.e., the number of goals 
scored by each team. Task 2 was to predict the match outcome as probability vector over 
the three possible result categories: victory of the home team, draw, and victory of the 
away team. Here, we present a new data- and knowledge-driven framework for building 
machine learning models from readily available data to predict soccer match outcomes. A 
key component of this framework is an innovative approach to modeling interdependent 
time series data of competing entities. Using this framework, we developed various 
predictive models based on k-nearest neighbors, artificial neural networks, naive Bayes, 
and ordinal forests, which we applied to the two tasks of the 2023 Soccer Prediction 
Challenge. Among all submissions to the Challenge, our machine learning models based 
on k-nearest neighbors and neural networks achieved top performances. Our main insights 
from the Challenge are that relatively simple learning algorithms perform remarkably well 
compared to more complex algorithms, and that the key to successful predictions lies in 
how well soccer domain knowledge can be incorporated in the modeling process.

Keywords 2023 soccer prediction challenge · k-NN · Ordinal forests · Naive Bayes · 
Neural networks · Outcome prediction · Soccer analytics · Super league

1 Introduction

Unlike individual sports, such as tennis or golf, team sports are characterized by a much 
higher degree of complexity due to the vast number of possible interactions between 
players, moves, tactics, and strategy. Thus, predicting the outcomes of team sports games 
is extremely difficult. Soccer, arguably one of the most popular team sports worldwide, is a 
multi-billion dollar business. The modern game of association football is governed by the 
rules set forth by the Football Association Board and organized by bodies like FIFA (the 
Fédération Internationale de Football Association) and various continental and national 
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federations. Predicting the outcome of soccer matches has been a subject of research 
since at least the late 1960  s (Reep & Benjamin, 1968; Hill, 1974; Maher, 1982; Dixon 
& Coles, 1997; Angelini & De Angelis, 2017). Over recent years, soccer match outcome 
prediction has gained increased attention from the machine learning community (Berrar 
et al., 2019a). The beauty of soccer match outcome prediction is that the fundamental task 
can be understood by practically anyone, and it is therefore also an excellent vehicle to 
showcase machine learning research to a wider audience. At the same time, it provides a 
truly exciting challenge for machine learning.

While match outcome predictions are of interest to clubs, soccer associations, sports 
equipment and services companies, etc., it is certainly also incentivized by the betting 
industry (Malamatinos et al., 2022). Part of the fascination of soccer is explained by the 
difficulty to predict the outcome of a match. If we viewed a soccer match as a scientific 
experiment to determine which team is better, we would realize that the number of robust 
measurements is rather limited. A soccer match involves hundreds of skillful moves and a 
wide variety of strategic and tactical plans, but the outcome is typically decided by a hand-
ful of quick and often random events, for example, a free kick, a mistake by a defender or 
goal keeper, an own goal, and so on. Yet the average number of shots per game is typically 
only between 20 and 30, and only 10–15% of these lead to a goal. In approximately 73.4% 
of the games, no more than three goals are scored, and about 66.2% of the matches end in a 
draw or with a margin of victory of only a single goal.1

On a more abstract level, league soccer could be a viewed as a pool of contenders 
competing against each other in an attempt to gain an advantage over their competitors. 
There are analogies to many other domains; for example, in political science (e.g., the 
outcomes of debates between political candidates are scored to create a win–loss–draw 
record at different time points), the entertainment industry (e.g., two movies released at 
the same time compete for box office revenue, and the “winner” is determined at weekly 
intervals), the technological sector (e.g., “OS platform wars”), the tertiary education sector 
(e.g., two similar universities compete for a higher ranking), medicine and public health 
(e.g., the effects of two different interventions are monitored over time), and many more. 
In all these contexts, the common thread is the competition between two entities whose 
outcomes can be tracked over time.

This study presents a new data- and knowledge-driven framework for buidling machine 
learning models from readily available data to predict soccer match outcomes. A key 
component of this framework is an innovative approach to modeling interdependent 
time series data of competing entities, that is, data of soccer teams that compete against 
each other over time. To illustrate and validate our framework, we developed a variety of 
machine learning models for the 2023 Soccer Prediction Challenge. This Challenge invited 
researchers to develop machine learning models to predict the scores and results of 736 
soccer league matches played in the second half of April 2023. While the participants were 
allowed the use any publicly available data for model development, the study presented 
here is deliberately based exclusively on the training set provided by the Challenge. This 
data set consists of more than 300 000 league soccer matches covering 51 leagues in 34 
countries. Each entry in this data set describes a match in terms of league, season, date, 
team names, and final score. Other, more comprehensive datasets do exist, but they are not 
readily available. Since the authors of this study are also the organizers of the Challenge, 

1 https:// footy stats. org/ stats/ shots- on- target
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our contributions were out-of-competition; however, we do compare our results with those 
of the other participants.

The match records captured by the training set are “competitive” time series that do 
not lend themselves to a straightforward machine learning approach. How to construct 
useful predictive features from these data is not trivial. Our framework incorporates 
soccer domain knowledge in the modeling process by focusing on the knowledge-driven 
engineering of predictive features from interdependent time series of competing entities. 
We used artificial neural networks, k-nearest neighbors (Cover & Hart, 1967), ordinal 
forests (Theißen et al., 2020, Hornung, 2020), and naive Bayes learning (Berrar, 2018) to 
illustrate and validate the framework. We also developed three types of reference models to 
gauge the performance of the machine learning models. Two of the three reference models 
are based on simple statistics. The remaining reference model makes use of match outcome 
odds provided by bookmakers.

The novel contributions of our work can be summarized as follows: 

1. We present a new data- and knowledge-driven framework for developing machine 
learning models from readily available soccer match data. This framework includes 
fundamentally new approaches to predictive feature engineering from interdependent 
time series of competing entities. In principle, this framework can be used in 
combination with various supervised learning algorithms.

2. We validate our framework by building several machine learning models for the 2023 
Soccer Prediction Challenge. Our main insights are that relatively simple learning 
algorithms, such as k-nearest neighbors, perform remarkably well compared to more 
complex algorithms. The key to successful predictions clearly lies in how well soccer 
domain knowledge can be incorporated into the development process.

This article is organized as follows. In order to aid those readers who are not too familiar 
with the relevant soccer concepts, Sect. 2 briefly introduces some of the important notions 
and terms reoccurring in this paper. Section  3 summarizes the related work. In Sect.  4, 
we briefly describe the 2023 Soccer Prediction Challenge. In Sect. 5, we present the data- 
and knowledge-driven framework, giving a comprehensive rationale for the methods and 
approaches. In Sects. 6, 7, 8, 9, we apply and validate the framework by developing several 
machine learning models and reference models for the 2023 Soccer Prediction Challenge. 
The paper ends with a discussion (Sect. 10) and conclusion (Sect. 11).

2  Background

There are various types of soccer competitions at club and national team levels. However, 
the grassroots foundation of association football is league soccer. League soccer refers 
to soccer competitions that are structured in a league format. This includes professional 
leagues like the English Premier League or the Major League Soccer in the United States 
as well as amateur leagues. In these leagues, teams play a set schedule of games against 
one another, and points are awarded based on the outcomes of these games (nowadays 
three points for a victory, one point for a draw). Rankings within the league are determined 
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by the number of points teams have accumulated, with goal difference and goals scored 
serving as tiebreakers.2

A league soccer match refers to a competitive game that takes place between two teams 
within the structure of a specific soccer league. A league comprises a fixed number of 
teams (e.g., the English Premier league has 20, the German Bundesliga 18 teams). The first 
named team of a match is referred to the as the home team, the second as the away team. A 
match always takes place at the home team’s venue or ground (some rare exceptions exist). 
Specific seasons of famous leagues sometimes choose subtle variations of this general 
structure, but those do not fundamentally alter the concept of league soccer. A scheduled 
match is sometimes also referred to as a fixture.

There are normally two ways to state the outcome of a league soccer match: score and 
result. The score gives the outcome of a match in terms of the number of goals scored by 
the home and the goals scored by the away team. We use the notation n-m as a shorthand 
for stating a match score. For example, 2–1 means that the home team scored two goals 
and the away team one goal. The match results states the outcome of a match in terms of a 
home win, a draw, and an away win. We often use the terms win, draw, and loss as a kind 
of shorthand for stating a match result. The result is derived from the score as follows: 
A “win” means that the home team scored more goals than the away team, for example, 
a score of 2–1 represents a “win” (by the home team). The result is a draw if both teams 
score the same number of goals, e.g., a score of 2–2 is a “draw”. Finally, a “loss” (win by 
the away team) occurs if the away team scores more goals than the home team, e.g., a 1–4 
score represents a “loss.”

The team that won the match is awarded 3 points. In case of a draw, each team is 
awarded 1 point. Thus, using the above shorthand for result, a “win” means the home team 
gets 3 and the away team gets 0 points, a “draw” means both teams get 1 point, and a “loss” 
means the away team gets 3 and the home team gets 0 points. Based on the number of 
points, a league ranking table is determined. Ties are typically resolved by goal difference 
and goals scored. By the end of the season, the top-ranked team is normally crowned 
the “league champion.” In leagues below the highest league, the top-ranked teams are 
promoted to the league above. The bottom-ranked teams are relegated to the next league 
below their league.

While match formats vary, in many leagues the matches are scheduled to take place over 
the course of a season, which normally lasts around eight months during which each team 
plays each other team twice, once at its home venue and once at the opponent’s venue.

The feature engineering approach presented in this paper revolves around the teams’ 
past performances within a given league. Here, we distinguish three aspects referred to as 
total, home, and away. “Total” means that we include all considered past performances of 
a team, regardless of whether they have been achieved at the team’s home venue or at the 
venues of its opponents. The home and away view, on the other hand, focuses separately on 
a team’s past performance for home matches and away matches, respectively. This captures 
explicitly the home and away aspects, but each view has only half the data points of the 
total view.

Our approach to feature modeling breaks up the natural season boundaries found in 
league soccer and introduces three separate league concepts: league, super league, and 
meta league. Under the league view, we maintain the natural structure of league soccer 
and process the data of a given league strictly in a season-by-season fashion. Under the 

2 The goal average is an older alternative that is still in use in the Australian Football League.
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super league view, we combine all data of a given league over all seasons covered in the 
Challenge datasets. This leads to an artificial league that we call “super league.” Super 
leagues consist of more teams than the underlying league would allow within a single 
season. The meta league concept is even more radical, as it combines the data of all leagues 
across all covered season in the Challenge data into a single league called “meta league.”

3  Related work

One of the first studies on soccer data analysis concluded that chance dominates the 
outcome of a match (Reep & Benjamin, 1968). Maher (1982) developed a Poisson 
model for the number of goals that a team scores during a match, which was applied to 
four English football league divisions. As Dixon and Coles (1997) pointed out, it is 
comparatively easier to predict which teams will perform well in the long run, whereas 
reliable predictions for individual matches are far more difficult. Jurman (2020) showed 
that the match outcomes in longer competitions, such as a national league, essentially 
follow a linear trend, which can be exploited for match outcome prediction. Still, to what 
extent the outcome of match is predictable remained largely unknown.

Over the last 20 years, machine learning methods have been increasingly used for sports 
outcome prediction. In one of the first studies focusing on soccer, O’Donoghue et al. (2004) 
used machine learning methods to predict the results of the 2002 FIFA World Cup, but the 
best predictions were obtained from a simulation study with a commercial game console. 
More recently, Malamatinos et al. (2022) used k-NN, LogitBoost, support vector machines, 
random forests, and CatBoost to predict the outcomes of the Greek Super League. Among 
the investigated models, CatBoost achieved the best performance. Similarly, Kundu et al. 
(2021) used different learning algorithms to predict the outcomes of matches of the English 
Premier League and obtained the overall best performance with a gradient boosting 
regressor model. Hubáček et al. (2019) and Berrar et al. (2019b) also reported promising 
results from gradient boosted trees for the 2017 Soccer Prediction Challenge. The goal 
of this Challenge was to explore to what extent the outcome of a soccer match could be 
predicted with machine learning based on readily available match data (Dubitzky et  al., 
2019; Berrar et  al., 2019a). The overall best performance was achieved by a k-nearest 
neighbors model trained on rating features (Berrar et al., 2019b).

Ievoli and Palazzo (2021) used passing network indicators quantifying player interac-
tions as explanatory variables. They showed that network-based variables are related to a 
team’s offensive actions and can improve the performance of forecasting models. Ren and 
Susnjak (2022) used the Kelly index to first categorize football matches of different pre-
dictability and then applied a variety of machine learning algorithms, which were bench-
marked against bookmaker odds. Razali et al. (2022) developed a model for soccer match 
outcome prediction based on the pi-rating system using TabNet, which is a deep neural net-
work for tabular data. The researchers re-analyzed the data from the 2017 Soccer Predic-
tion Challenge and reported a better performance than the top-rated participants. Stübin-
ger et al. (2020) developed an ensemble of machine learning models to predict outcomes 
based on match and player attributes. In a simulation study, they included all matches of 
the top five European football leagues and the corresponding second tiers between 2006 
and 2018. They benchmarked their predictions against the odds from one of the leading 
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online bookmakers. The ensemble model resulted in economically and statistically signifi-
cant returns of betting investments.

Predicting the outcome of a soccer match is extremely difficult. First, there are many 
factors that interact in highly complex ways to produce goals in soccer. Second, compared 
to other team sports like basketball, ice hockey, or volleyball, soccer is a sport with a very 
low number of scoring attempts (i.e., shots on goal) and actual goals in a typical match. 
In the study presented here, we used a dataset that provides limited information about 
soccer matches. Predicting the outcome based on such limited data represents a formidable 
challenge. More comprehensive data about soccer matches may exist in commercial 
databases, but these databases are not readily available. However, as the mentioned studies 
illustrate, it is indeed possible to predict the outcomes, at least to some extent.

4  The 2023 Soccer Prediction Challenge

Central to the 2023 Soccer Prediction Challenge is a dataset describing 736 league soccer 
fixtures from 44 leagues in 28 countries. This dataset is referred to as prediction set. All 
fixtures in the prediction set were scheduled to take place in the period between April 
14 and 30, 2023. The participants of the Challenge were asked to predict the outcomes 
of all 736 fixtures by the strict deadline of 23:59 C.E.S.T. on April 13, 2023, i.e., prior 
to the start of any of these matches. Specifically, the challenge was to predict the match 
outcomes in terms of exact scores (Task  1) and a probability forecast of the results 
(Task 2). Participants were requested to address at least one of the two tasks. To compare 
the submitted predictions, two error measures were defined and communicated to the 
participants: the root-mean-square error (RMSE) and the ranked probability score (RPS). 
The RMSE was used to evaluate the score predictions (Task 1), and the RPS to evaluate the 
result predictions (Task 2).

The RMSE defined by Eq.  (1) computes the total error of score predictions across a 
number of predicted matches,

where n is the number of matches in the prediction set; ŝi(H) denotes the predicted and 
si(H) the observed number of goals scored by the home team in the i th match, and ŝi(A) 
and si(A) are the respective predictions for the goals scored by the away team, such that 
ŝi(H), si(H), ŝi(A), si(A) ∈ ℕ0.

The smaller the RMSE, the better the predictions. In this definition, each individual 
error is the sum of the squared difference of the predicted and observed number of goals 
scored by the home, and the squared difference of the predicted and observed number of 
goals scored by the away team.

For the evaluation of the Challenge score predictions, only non-negative integers were 
permitted. For some models in the present study, we allow non-negative real numbers in 
the model training phase, but round the final predictions to non-negative integers.

The RPS is a scoring function designed for ranked or ordinal categories (Epstein, 1969; 
Constantinou & Fenton, 2012). The participants of the Challenge were required to pro-
vide their result predictions as a probability vector, �̂� = (ŷ1, ŷ2, ŷ3) , where ŷ1 denotes the 

(1)RMSE =

√√√√1

n

n∑

i=1

[
(ŝi(H) − (si(H))2 + (ŝi(A) − si(A))

2
]
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predicted probability of a win, ŷ2 of a draw, and ŷ3 of a loss, such that 
∑3

j=1
yj = 1 . To com-

pute the RPS of such a probabilistic forecast, we need to represent the observed result as a 
hotvector y = (y1, y2, y3)�yj ∈ {0, 1} ∧

∑3

n=1
yj = 1 . Hence, the hotvector (1, 0, 0) denotes 

an observed win, (0, 1, 0) a draw, and (0, 0, 1) a loss. The lower the RPS, the better the 
prediction. The RPS is defined as shown in Eq. (2).

For example, given the result prediction (0.6, 0.3, 0.1) and an observed draw, (0, 1, 0), the 
RPS for this prediction works out to be 0.185.

The average ranked probability score, RPSavg , was used to provide a combined score of 
all predictions in the prediction set,

In addition to the prediction set, the Challenge also provided a training set consisting of the 
basic match data of 302 691 completed league soccer matches from 51 leagues in 34 coun-
tries. All matches in the training set were played after March 18, 2000, and before the cut-
off date of April 5, 2023. The cut-off year of 2000 was chosen because from 2000 onward, 
all leagues covered in the training set have had adopted the three-points-for-a-win rule. The 
Challenge participants were allowed to use any publicly available datasets to train their 
machine learning models, or the training set provided by the organizers, or both.

The approach and models in this study are based exclusively on the training set (and 
prediction set) provided by the Challenge.

Due to late changes in the fixture schedules, the prediction set that was finally used 
to evaluate the submissions to the 2023 Soccer Prediction Challenge was reduced to 714 
matches. These matches originate from 43 leagues in 27 countries.

5  Data‑ and knowledge‑driven framework

A machine learning approach to predicting the outcomes of soccer matches based on 
readily available match data like those provided by the 2023 Soccer Prediction Challenge 
entails the following: (1) use soccer domain knowledge to understand the problem 
and inform the modeling process; (2) process and transform the time series data from 
competing teams, with the goal of determining optimal predictive features; (3) generate 
and evaluate machine learning models based on test data; (4) apply selected models to the 
Challenge prediction set for an independent evaluation on real future data.

The subsections below describe the various aspects of the data and the framework.

5.1  Readily available match data—the Challenge data

The training data provided for the 2023 Soccer Prediction Challenge capture basic infor-
mation about soccer matches. Each entry includes the date on which the match took place, 
the names of the two teams facing off in the match, the final score, the name of the soccer 

(2)RPS =
1

2

2∑

i=1

(
i∑

j=1

(ŷj − yj)

)2

(3)RPSavg =
1

n

n∑

i=1

RPSi
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league, and the season in which the match was played. Table 1 shows the first five entries 
of the training set.

The season values in Table  1 are a shorthand. For example, “00–01” is an 
abbreviation for the “2000/2001” season (sometimes also written “2000/01”).

Clearly, this data is rather limited in terms of variables that are potentially predictive 
of the outcome of a soccer match. However, one of the advantages of the training data 
is that they are widely and readily available, both in terms of historic records and 
timely availability before future matches take place.

The Challenge training set includes only two quantitative variables (positive whole 
numbers including 0), i.e., the final score of completed matches. Each score variable 
could at the same time be viewed as a characteristic of the home team as well as the 
away team. For example, a match score of 4–1 is simultaneously indicative of the 
home team’s attacking strength (the home team scored 4 goals) and the away team’s 
defending weakness (the away team conceded 4 goals).

In addition to the quantitative score variables, the training data include the names of 
the teams facing off against each other. Potentially, these nominal categorical variables 
could serve as predictive features. For example, the correlation of the team name pair 
(Liverpool,  X) with a home win might be stronger than that of the pair (Fulham,  X) 
(where X is any other team in the league).

One aspect of league soccer is that all matches are confined to within a league 
and a season. This means that the league (nominal categorical) and season (nominal 
ordinal) variables are identical for all matches in a given league and season. Thus, 
these variables do not seem to be good individual predictors.

The date variable does not seem to by highly predictive in terms of the outcome 
of individual matches, either. Typically, on a given date, multiple league matches 
take place. However, the date variable is crucial, as it imposes a total (chronological) 
order relation on the matches from the oldest to the most recent matches. Therefore, 
each team in the Challenge training set could be viewed as a subject or individual 
of a longitudinal time series because certain characteristics of a team could be 
“measured” at multiple points in time. Consider Table 4. Focusing on Liverpool, we 
can track the goals that Liverpool has scored over time as follows: two goals in the 
match on February 13, 2023, two on February 18, 2023, zero on March 25, 2023, 
and so on. However, we need to keep in mind that such quantities not only depend on 
the team under consideration, but also on its opponent. It is obviously easier to score 
goals against an opponent with a weak defense. If we computed the average of such 
quantities over a number of time points, then the influence of individual opponents 

Table 1  Excerpt of the Challenge training set (Sea=season, Lge=league, HT=home team, AT=away team, 
HS=home score, AS=away score, GD=goal difference, WDL=win(W), draw (D), or loss(L))

Sea Lge Date HT AT HS AS GD WDL

00-01 GER1 11/08/2000 Dortmund Hansa Rostock 1 0 1 W
00-01 GER1 12/08/2000 Bayern Munich Hertha Berlin 4 1 3 W
00-01 GER1 12/08/2000 Freiburg VfB Stuttgart 4 0 4 W
00-01 GER1 12/08/2000 Hamburger SV Munich 1860 2 2 0 D
00-01 GER1 12/08/2000 Kaiserslautern Bochum 0 1 -1 L
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should average out. The feature engineering approach presented in this study is based 
on the concept of longitudinal team performance time series.

5.2  The team perspective

It is not immediately obvious how the Challenge training set could be used to train machine 
learning models. In order to make the data amenable to supervised learning, we need to 
determine a feature representation which is predictive of the match outcome. Here, we 
explain our approach to feature modeling from the perspective of teams.

Given the two teams facing off in a match, our main concept of predictive modeling 
revolves around the idea that prior to a match, each of the two opposing teams could be 
characterized by a set of quantitative features that are prognostic of the match outcome. 
These features can be grouped into the team performance, such as the team’s ability to 
score goals, concede no goals over a sequence of matches, achieve a certain victory rate 
at the team’s home venue, and so on. These categories are necessarily linked to the two 
quantitative score variables of the training data. Even with the highly limited data we have 
in the training set, a considerable number of such categories are conceivable. According to 
soccer domain knowledge, the following team performance aspects are important for pre-
dicting the outcome of a competitive soccer league match: attacking and defending ability, 
ability to maximize results, and performance or success in the league (Table 2).

The Scoring and Conceding team performance categories relate directly to the two 
score variables in the training set. A soccer team that scores many goals (in relation to its 
competitors) could be viewed as having a strong attack. Similarly, a team that consistently 
prevents its opponents from scoring many goals is likely to have a strong defense. The 
stronger a team’s attack and defense compared to its opponent’s attack and defense, the 
more likely it is to prevail. The Scoring/Conceding category refers to an aggregate or 
combination of the team’s Scoring (attack) and Conceding (defense) categories.

The Winning, Drawing, and Losing performances of a team relate directly to the result 
of matches (win, draw, loss), the points that a team earns, and how the team performs in 
the league as a whole. The Points category is essentially similar but provides a different 
“view” of the same aspects. This is relevant, given the points awarding scheme in league 
soccer (3 points for a win, 1 for a draw, and 0 for a loss).

The League category provides a kind of “league-calibrated” view of a team’s overall 
performance or success in the league. How successful a team is in the league is expressed 
by the team’s position or rank in the league table. The higher a team is ranked in the table, 

Table 2  Eight important team performance categories

Performance category Description

Scoring Team’s ability to score goals (attacking performance)
Conceding Team’s ability to prevent goals (defensive performance)
Scoring/conceding Team’s aggregate ability of scoring and conceding goals
Winning Team’s ability to win matches
Drawing Team’s ability to hold a draw
Losing Team’s propensity to lose matches
Points Team’s ability to earn points
League Team’s league table position
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the more competitive the team is in relation to teams ranked below it. Soccer league tables 
are normally ordered by points first and then by goal difference (and by the number of 
goals scored).

The performance categories (Table  2) do not explicitly differentiate a critical factor 
called home advantage. The home advantage in soccer (and indeed other team sports, too) 
is a well-known phenomenon whereby teams experience a considerable competitive advan-
tage by playing at their home venue (Wunderlich et  al., 2021; Nevill & Holder, 1999). 
Based on the Challenge training set of over 300 000 matches, we can provide a quantitative 
estimate of the home advantage as follows: 44.83% matches are won by the home team 
(compared to 28.14% wins by the away team), and the average number of goals scored 
by the home and away team is 1.47 and 1.12, respectively. The performance categories 
(Table 2) could be constructed separately for a team’s home, or away and total (home and 
away matches combined) performances. Thus, our feature modelling framework is capable 
of explicitly capturing the home advantage.

With the eight features (Table 2), the performance of a single team could potentially be 
represented by a maximum of 24 features—eight features for each of the total, home, and 
away performances, respectively. However, such a representation would be highly redun-
dant because six out of the eight basic feature categories are ultimately derived from the 

Table 3  Man City matches on 
and prior to April 1, 2023

Dates are in format DD/MM/YYYY 
The fixtures in bold face are discussed in the main text
HT: home team; AT: away team; HS: home team; AS: away team 
score

Date HT AT HS AS

12/02/2023 Man City Aston Villa 3 1
15/02/2023 Arsenal Man City 1 3
18/02/2023 Nottingham Forest Man City 1 1
25/02/2023 Bournemouth Man City 1 4
04/03/2023 Man City Newcastle United 2 0
11/03/2023 Crystal Palace Man City 0 1
01/04/2023 Man City Liverpool 4 1

Table 4  Liverpool matches on 
and prior to April 1, 2023

Dates are in format DD/MM/YYYY 
The fixtures in bold face are discussed in the main text
HT: home team; AT: away team; HS: home team; AS: away team 
score

Date HT AT HS AS

13/02/2023 Liverpool Everton 2 0
18/02/2023 Newcastle United Liverpool 0 2
25/02/2023 Crystal Palace Liverpool 0 0
01/03/2023 Liverpool Wolverhampton 2 0
05/03/2023 Liverpool Man United 7 0
11/03/2023 Bournemouth Liverpool 1 0
01/04/2023 Man City Liverpool 4 1
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scoring and conceding performances, and the eight total performances are derived from 
the home and away performances, respectively. Since each match involves two teams, the 
maximum number of features per match would be 48, that is, 24 for the home team and 24 
for the away team.

Next, we describe the rationale for the representation that we adopted.
Let’s say we are considering an upcoming match between the home team H and the 

away team A. For each team, we compute an estimate of a feature f by aggregating the 
n recent performances corresponding to the feature f. Obvious candidates for aggregation 
include the mean and median. To illustrate this idea, consider Tables 3 and 4: for the ENG1 
league match on April 1, 2023, between Man City and Liverpool (which ended in a 4–1 
win for Man City), we determine that Man City scored 2.33 and Liverpool 2.17 goals on 
average in their n = 6 recent encounters prior to the match. So before the teams are facing 
off, the scoring performance of Man City was considerably higher than that of Liverpool.

Tables 3 and 4 illustrate two interesting aspects of this feature modeling scheme. First, 
we see that the number of home and away matches that the two teams played in their six 
recent matches prior to April 1, 2023, are not the same—Man City played two home and 
four away matches, whereas Liverpool played three home and three away matches. Second, 
the time stamps in the date columns of Tables 3 and 4 show that the six recent matches of 
the two teams were not all played on the same dates. This leads to a situation where one 
team may have longer recovery times between matches than the other. However, the longer 
the time series becomes, the lower will be the effect of the home/away and time stamp 
discrepancies.

This leads us to the critical question: “How far back should one look into the history of 
recent matches of the teams to construct optimal features?” To answer this question, we 
need to consider various aspects of the league/season structure of league soccer.

5.3  The league/season perspective

The Challenge training set comprises a total of 302 691 matches covering 51 leagues in 34 
countries. In each country, league soccer is structured into three separate levels of organi-
zation, each level providing its own context. The first level of organization is the country 
level. The leagues within a country are structured along a hierarchy of divisions or tiers. 
The higher the division, the higher the quality of the teams playing in that division. The 
second level is the league level. Within a league, the number of teams is fixed. From league 
to league the number may vary, e.g., the SCO1 league consists of 12 and the ENG2 league 
of 24 teams. Each league organizes its matches into seasons. The duration of a soccer sea-
son varies by country and league. A typical season is played over a period of about eight to 
ten months. The number of seasons covered for each league in the training set varies from a 
minimum of 10 to a maximum 24. The earliest season covered is the 2000/2001 season and 
the most recent one is the 2023/2024 season.

Across all leagues and seasons, the data format in the training set is the same. Thus, 
one might be tempted to model the features by combining all league-season subsets into 
a single large dataset. However, domain knowledge as well as the data tell us that the 
characteristics of the leagues may vary from one league to another. In statistical terms, one 
cannot necessarily assume that data from different leagues come from the same population. 
We refer to this as the cross-league compatibility problem. We briefly illustrate this issue 
based on the home win proportion and away goal average for the DZA1 and JPN2 leagues 
in the Challenge training set. The home win proportion is 53.21% for DZA1 (Algerian 
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top division) and 39.12% for JPN2 (2nd division of Japan), respectively. Because of these 
league-to-league variations, we do not merge all leagues into a single large dataset.

Processing the data for each league separately raises the question of how to deal with 
the seasons within a league. Soccer domain knowledge tells us that each season within a 
league is unique. This implies that a team in one season may not be necessarily directly 
comparable with the same team in the next season. We refer to this as the season-transition 
problem. There are two main components to the season-transition problem: (1) the change 
of teams that feature in a league from season to season; (2) the change within teams, in 
particular with regard to their players, from season to season.

Most soccer leagues see a change of teams featuring in the league due to relegation and 
promotion. This means that by the end of a season, some of the lowest ranked teams in the 
league will be relegated to the tier below, while some of the highest ranked teams will be 
promoted to the tier above. For the top tier in each country, teams leave the league only 
via the relegation route. In the Challenge training set, 34 of the 51 leagues represent top-
tier leagues in their respective countries. This means the team fluctuation across seasons is 
limited because the lowest ranked teams will be replaced by the highest ranked teams from 
the league below. For example, the GER1 league comprises 18 teams. After each season, 
two or three teams are relegated to the lower GER2 league and replaced by promoted 
teams from GER2. This means that 15 or 16 out of 18 teams that played in one season in 
GER1 play also in the following season. So there is a reasonable consistency from season 
to season. 17 out of the 51 leagues in the Challenge training set have a tier above and 
below them. For these leagues, there is a greater shake-up in terms of the teams featuring 
in the league from season to season. For example, between 4 to 6 out of a total of 18 teams 
featuring in the GER2 league will be replaced as a result of promotion (from GER3 to 
GER2) and relegation (from GER1 to GER2). Although somewhat less than in the 34 top-
ranked leagues, there is still a majority of teams that remain in the league from season 
to season. The following example from the GER1 league further illustrates the relative 
“stability” of teams belonging to a league across season boundaries. Over the 23 seasons 
(from the 2000/2001 to 2022/2023 season) covered for the GER1 league (which always 
comprises 18 teams) in the training set, no more than 37 teams featured in the league. This 
relative stability of teams within a league is central to our feature modeling approach.

Transiting from season to season, another—and perhaps even more important—problem 
crops up. At the months-long break between seasons, soccer clubs usually change many 
things, from coaching staff, to players, to new business arrangements with sponsors, etc. 
Perhaps one of the most critical changes is due to players leaving the team and new players 
arriving. This is critical because the players are the most valuable assets that professional 
soccer clubs have. Also, there are regulatory restrictions on when players can be recruited. 
Usually, there are only two windows in a season where this happens. Therefore, errors 
made when changing the composition of a team (in terms of its set of players) cannot be 
immediately corrected. Also, it is always a challenge to integrate new players into a team.

After investigating the main aspects arising from cross-league differences and 
from the season to season transitions within a league, we view (for the time being) the 
matches played within a particular league and season as the most “natural” unit. Based 
on this assumption, feature engineering should be performed separately for each of such 
units before any further data integration or model training should occur. This view is 
consistent with common soccer domain knowledge. While this assumption seems sound, 
we ultimately abandoned it in our feature engineering approach, for the following reasons.

Computing features separately for each season within each league is problematic; 
especially, matches at the start and end of the season pose problems.
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First, towards the end of a season, many decisions (promotion, relegation, champion-
ship, qualification for other competitions, etc.) have normally been settled before the final 
matches are being played. Thus, a number of matches in the final stages of a season may 
no longer be fully competitive, casting doubt on the robustness of features derived from 
such matches. This is what we refer to as the end of season problem. Ideally, such matches 
should be identified and perhaps removed from the training data altogether. However, the 
disadvantage is that dropping matches will reduce the size of the training set.

Second, at the beginning of the season, we face what we refer to as the start of season 
problem. As a season for a given league gets underway, all teams start with zero goals 
and zero points. We have to wait until each team has played a decent number of matches 
before we can compute reliable performance indicators. The problem is that this leads to 
a considerable reduction of the instances in training data. To illustrate this idea, let’s say 
we require each team to have played a minimum of six matches before we compute perfor-
mance features. Consider the total of 380 matches played over a single season in the ENG1 
league (20 teams). We already lose the last 10 matches from the dataset, as we do not have 
any features to compute for any matches after the last match day in the season. Depending 
on the concrete match schedule, 60 additional matches would be lost when we require each 
team to have played a minimum of six matches. So in total, we lose about 70 ( 18.4% ) of the 
380 matches from a single season of ENG1.

The strength of the opposition problem is perhaps one of the more subtle aspects 
relevant to feature engineering. As we aggregate various past performances of a team into a 
predictive feature value, we should factor in the strength of the opponent against which the 
team has achieved these performances. For example, a 2–1 win against a top team should 
carry more weight than a 3–1 win against a weaker opponent.

Finally, we consider the recency problem. To model features based on the performances 
of the teams over their n recent matches, an optimal value for n is required. The first obvi-
ous choice is to include all matches a team has played in the current season prior to a given 
match. The idea is that the features would become more robust the further the season has 
progressed. However, one could argue that performances too far back in the season are 
obsolete and no longer predictive for the current match. So in a sense, we are looking at 
a compromise between long-term and short-term performance trends. Adopting a within 
league-season approach for feature modeling means that the number n of recent matches 
that one could consider for a team changes gradually from 0 (for the team’s first match in 
a season) to the maximum of N (for the team’s last match) over a season. The value of N 
depends on the format of the league schedule, which varies from league to league, an the 
number of teams, T, featuring in a league. A common schedule format consists of each 
team playing the other twice, once at home and once at the away venue. For such a for-
mat, N = 2(T − 1) , where T denotes the number of teams in a league. For example, for the 
ENG1 league, T = 20 , hence N = 2(T − 1) = 2(20 − 1) = 38 . So over the course of a full 
season, each team in ENG1 plays a total of N = 38 matches. This means that right before a 
team’s last (38th) match in the season, a each ENG1 team has already played 37 matches. 
These 37 matches would be the basis for calculating the actual features indicative of the 
outcome of the current match (in this case the last match of the team in the season). How-
ever, the problem is that this is the maximum value for n. In particular, in the beginning of 
the season, n is small and perhaps not ideal for calculating robust predictive features.
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5.4  The feature model

We performed an exploratory data analysis and model prototyping using the k-nearest 
neighbors algorithm. We used the k-NN model in leave-one-out cross-validation (LOOCV) 
for each league in the training set. This resulted in a mean RPS of 0.2104 (standard 
deviation 0.0098) and a mean RMSE of 1.649 (standard deviation 0.1011) across all 
leagues. This analysis has led us to adopt the following feature modeling assumptions and 
decisions:

• Compute features strictly separately for each league.
• For each league, merge matches from all seasons into a “super league.”
• Let data analysis and model prototyping decide the best recency depth n.
• Explore a limited number of “plausible” (based on domain knowledge) feature sets.
• Select promising features sets and develop machine learning models.

We decided to compute features strictly on a league-by-league basis. Furthermore, 
we merged the data from all seasons within a league and sorted the resulting dataset 
chronologically based on the date variable. This process generated a kind of “super 
league.” Such a super league approach has two main advantages. First, it explicitly captures 
the idiosyncratic context of each league, thus mitigating the cross-league compatibility 
problem. Second, for most teams, it allows us to construct much longer time series than 
would be possible with a season-by-season approach. This should reduce the impact caused 
by the beginning-of-season-problem.

Conceptually, as discussed above, the super league approach contradicts common soccer 
wisdom because the composition of the teams may change drastically from one season to 
the next due to change of players, coaching staff, club ownership, sposorship, etc. Other 
problematic issues include a potential limitation of the length of the time series for some 
teams and “gaps” in the time series for teams that feature in the super league for only a few 
seasons.

Table 5  Nine selected teams of the ENG1 super league over nine consecutive seasons, including the season 
2022/23 up to  April 4, 2023

The cell numbers state the number of games a team has played in the corresponding season. The Total 
column states the total number of matches that a team has played since the start (2000/01) of the super 
league

Team 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 Total

Norwich City 0 38 0 0 0 38 0 38 0 266
Portsmouth 0 0 0 0 0 0 0 0 0 266
Fulham 38 38 38 38 38 0 38 0 28 266
Watford 0 38 38 38 38 38 0 38 0 266
Burnley 38 0 38 38 38 38 38 38 0 304
Nottingham Forest 0 0 0 0 0 0 0 0 28 28
Middlesbrough 0 0 38 0 0 0 0 0 0 380
Newcastle United 38 38 0 38 38 38 38 38 27 787
Man City 38 38 38 38 38 38 38 38 28 826
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Merging all seasons of a league into a single super league means that all teams that have 
ever played in the corresponding league make up the super league. For instance, the train-
ing set covers 23 seasons for the ENG1 league from the 2000/01 to 2022/23 season. After 
merging the matches of all 23 seasons into one super league, the resulting dataset con-
tains a total of 8639 matches and includes the 45 teams that have ever played in ENG1 in 
these 23 seasons. Table 5 depicts a selection of nine teams over nine seasons of the ENG1 
league. All seasons except the last (labelled 22–23) are complete. Since there are 20 teams 
in the ENG1 league, each team plays a total of 38 matches over a complete seasons. First, 
we notice that Portsmouth has not played in any of the nine seasons depicted in the table. 
But the Total column suggests that Portsmouth has featured 266 times in the ENG1 league 
in the seasons from 2001/01 to 2013/14 (prior to the nine seasons in the table). Second, we 
can infer from the table that Man City has featured in 22 of the 23 seasons covered by the 
training set (the team missed out on the 2001/02 season). Third, we see that most teams 
depicted in the table (except Man City) did not feature in all of the nine seasons shown 
in Table  5. This causes gaps in their team performance time series. For example, Nor-
wich City appeared only in 3 of the 9 seasons depicted in the table, with three one-season 
and one three-season gaps. After some experimentation, we decided that from the perspec-
tive of a given match, we can simply concatenate all matches prior to the current match in 
chronological order, so that we have a continuous time series for each team spanning all 
seasons the team has featured in the league. For example, if we are interested in the average 
number of goals that Watford scored in their n = 50 matches prior to their last (38th) match 
of the 2021/22 season, we would consider Watford’s remaining 37 matches of the 2021/22 
and the last 13 matches in the 2019/20 season (i.e., we simply ignore that Watford did not 
feature in ENG1 in the 2020/21 season).

Another subtle issue with the super league approach is linked to teams that feature only 
in a small number of seasons in the time frame covered by the Challenge training set (from 
2000/01 to 2022/23 seasons). For these teams, the length of the team performance time 
series is limited to the number of times they featured in the league. For example, there are 
four teams that featured only in a single season in the ENG1 league over the considered 
time frame. For these teams, the maximum length of the team performance time series is 
limited to 38 time points. Nottingham Forest is one of those teams. Since they have entered 
the ENG1 league for the first time in the incomplete Challenge season 2022/23, their 
situation is even worse, as they have appeared only in 28 matches in the entire training set.

One of the major advantages of the super league approach is that it affords the 
computation of much longer time series than would be possible with a within-season 
approach. Another advantage is the flexibility it gives us in terms of the datasets that 
we use for model training. First, since the datasets created by the super league approach 
capture the characteristics of each league separately, we have the flexibility to combine 
such datasets before model training. For example, we could combine all three super league 
feature datasets from the three Germany leagues (GER1, GER2, GER3) into a single 
“country league” dataset, or we could indeed combine all super league feature datasets 
arising from the Challenge training set into a single “meta league” dataset. Second, we 
could also keep the super league feature datasets separate and train our models strictly on 
a league-by-league basis, i.e., for a given league, we develop a machine learning based 
exclusively on the corresponding super league dataset.

Unfortunately, the end-of-season-problem is not explicitly addressed by the super league 
approach presented here. Our modeling assumption is to ignore this issue, as it affects only 
a handful of matches per league and season. One way to address this problem would be to 
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identify the affected matches and remove them altogether from the dataset. To realize this, 
a manual and time-consuming procedure would be required.

As described above, our approach to feature modeling could be subject to gaps if we 
considered very long time series that cut across seasons. For the Challenge, we encoun-
tered the unexpected situation that the prediction set featured a couple of teams whose 
team performance time series were limited to only a handful of matches. This situation 
came about because the affected teams have never been a member of the league before 
and that the seasons in those leagues commenced only a few weeks prior to the Challenge 
deadline. So for those teams, the features are based on very short time series. Feature value 
estimates derived from such short time series may not be very robust.

In this study, we deal with the home advantage aspect in two ways. First, we use two 
feature sets, one containing total, home as well as away, and one containing only total 
team performance features. The former feature set, referred to as “homeaway," provides 
an explicit representation of the home advantage. Second, for total team performance 
features (which merges home and away performances into a total performance 
category), we have a less explicit representation of the home advantage, as the home 
team’s features always come before the away team’s features in the feature training set.

The feature engineering concept presented here could produce a certain amount of 
“information leak” and therefore lead to a slight underestimation of the generalization 
error produced by machine learning models. In our feature modeling approach, each 
match is characterized by the past performances of the two teams facing off in a match. 
Once the features for all matches in the training set are determined, we usually split 
the data randomly into training and test set in order to estimate the model prediction 
performance. This could lead to the odd situation that some aspects of a team’s future 
performance (seen from the data of the current match in the training set) could be leaked 
from the test set to the training set. By adopting various cross-validation procedures, we 
hope to mitigate the effect that this has on the overall modeling process. We accept 
that this may result in a slight underestimation of the model’s generalization error. 
However, the feature calculation itself does not have this problem, as the features are 
strictly based on prior performance. Also, the information leak is not possible for the 
Challenge prediction set, which is essentially the ultimate “test set,” as the outcomes of 
the matches in the prediction set are not known at the time of model construction.

5.5  Feature generation

Our feature engineering procedure is based on the super league approach. This means 
that we compute features solely on a league-by-league basis, and we merge all seasons 
of a league covered in the datasets into a super league. Based on our reflections on fea-
ture modeling and some initial data analysis and model prototyping, we explored several 
feature sets. This resulted in two concrete choices. Each of the two chosen feature sets 
rests on three of the eight basic team performance categories shown in Table 2: Scored 
and Conceded goals and League success. Our choice is justified as follows. First, the 
goals that the teams score and concede are the only two primary quantitative variables 
in the Challenge data. They provide a direct competitive view of the teams facing off in 
a match. All other team performance categories are derived from these two variables. 
Second, the team performance category League success provides a context of the two 
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opposing teams in the league as a whole. In a sense, the League success category “qual-
ifies” the goal performance categories.

Our two feature sets are referred to as total and homeaway feature sets, respec-
tively. Total features are based on the combined home and away matches that a team 
has played. Homeaway team features are computed separately for the home and away 
matches of the team.

Let T denote either the home or away team facing off in a match. Further, let 
v ∈ {h, a, t} refer to either the home (h), the away (a), or the total (t) (i.e., home and 
away combined) “venue,” respectively, where the team’s performance was made. Then, 
we define the feature fv(T , nv) as the mean value of a team’s performance over a team’s 
nv recent matches at the corresponding venue v as shown in Eq. (4).

To illustrate this calculation, consider the current fixture Man City against Liverpool on 
April 1, 2023, depicted in Table 4. If feature f represents the goals scored (expressed as 
an average per match) and T stands for team Liverpool, we determine the feature val-
ues fh(Liverpool, nh) = 3.67 and fa(Liverpool, na) = 0.67 over the nh = na = 3 recent 
home and away matches, respectively, and ft(Liverpool, nt) = 3.00 over the nt = 3 total 
matches of Liverpool. If feature f represents Liverpool’s match winning performance 
(expressed as average wins per match) over the nh = na = 3 recent matches, we obtain 
fh(Liverpool, nh) = 1.00 (3 wins out of recent 3 home matches), fa(Liverpool, na) = 0.33 
(1 win out of 3 away matches) and ft(Liverpool, nt) = 0.66 (2 wins out of nt = 3 recent 
matches).

Conceptually, we should always use an even number for the nt recent total performances of 
a team and nh = na = nt∕2 for the nh and na recent home and away performances of a team. 
The reason for this choice is explained by the match schedule adopted in most leagues, where 
normally a team plays in an alternating fashion on the home and away venues. Thus, focus-
ing on even values for nt , we generally make sure that we capture the same number of home 
and away matches of a team. Using nt∕2 for both nh and na has two reasons. First, this choice 
ensures that the time period covered by nt is roughly the same as the combined time period 
covered by the nh = nt∕2 and na = nt∕2 recent matches. Second, the matches of a team cov-
ered by nt recent total and nh = nt∕2 and na = nt∕2 combined are normally the same.

In the remainder of this text, we use n sometimes in a generic way to refer to the number of 
recent matches independent on venue, and sometimes it is implied that n refers only to nt , the 
total team performances (Table 7).

For the League success feature, which represents the average league position of a team 
over n recent matches, we do not use the absolute ranks from the league table to compute 
the aggregate (average) feature values. Absolute rank positions could be used if the data 
were kept separate from other league data for the entire modeling cycle. Since we combine 
the data from all leagues for the homeaway feature set (meta league), using absolute ranks 
would be a problem because the number of teams in a league varies. To address this issue, we 
first calculate the normalized rank for each team and then determine the average over n recent 
matches. The normalized rank of a team is expressed as a value from the unit interval. A team 
ranked first has a normalized rank of 1, and a team ranked last has a normalized rank of 0.

Given the absolute rank R(T, N, n) of a team T in a league table derived from the n recent 
matches of N teams, the team’s normalized rank r(T, N, n) is calculated using Eq. (5). It would 
be possible to apply this calculation either to home or away matches only, or to all (total) 

(4)fv(T , nv) =
1

nv

nv∑

i=1

fv,i(T)
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matches, to make the result dependent on the venue in the same way as the features discussed 
above. Here, for conciseness, we present only the generic formula.

To illustrate Eq.  (5), consider Table 6. The table depicts two league tables covering the 
top 7 ranks prior to the match between Man City and Liverpool on April 1, 2023, (see also 
Tables 3 and 4). The top league table covers all matches from the start of the season 2022/23 
to March 19, 2023. The bottom league table is based on the n = 6 most recent matches of 
each team before April 1, 2023. The total average normalized rank, r(ManCity, 20, 27), of 
Man City over the entire season up to March 19, 2023 was 0.95 (based on 27 matches), that 
of Liverpool, r(Liverpool, 20, 26), only 0.68 (based on 26 matches). However, when we 
consider only the n = 6 most recent matches, we see that Liverpool fared much better than 
for the entire season: r(ManCity, 20, 6) = 0.95 and r(Liverpool, 20, 6) = 0.89 , respectively.

With these considerations, we now present the two feature sets chosen for this study: 
the total and homeaway feature sets, respectively. The total feature set consists of the 
six features depicted in the top six rows, and the homeaway feature set consists of all 18 
features depicted in Table 7.

For the total feature set, n recent matches of the teams are used to compute the aggre-
gated values for goals scored, goals conceded, and normalized rank. For example, given 
the ENG1 match on April 1, 2023 between Man City and Liverpool (see also Tables  3 
and 4), the values for all six features based on the n = 6 recent total matches are as 

(5)r(T ,N, n) =
N − R(T ,N, n)

N − 1

Table 6  League tables from rank 1 to 7 of ENG1 2022/23 season

Top: Based on all matches of a team from start of season. Bottom: Based on the 6 most recent matches of 
each team
The fixtures in bold face are discussed in the main text
R = absolute rank, Pld = matches played, Scr = goals scored, Con = goals conceded, r = normalized rank, 
scr = average goals scored, con = average goals conceded

Team R Pld Scr Con r scr con

Arsenal 1 28 66 26 1.00 2.36 0.93
Man City 2 27 67 25 0.95 2.48 0.93
Man United 3 26 41 35 0.89 1.58 1.35
Newcastle United 4 26 39 19 0.84 1.50 0.73
Tottenham Hotspur 5 28 52 40 0.79 1.86 1.43
Brighton 6 25 46 31 0.74 1.84 1.24
Liverpool 7 26 47 29 0.68 1.81 1.12

Team R Pld Scr Con r scr con

Arsenal 1 6 19 5 1.00 3.17 0.83
Man City 2 6 14 4 0.95 2.33 0.67
Liverpool 3 6 13 1 0.89 2.17 0.17
Brighton 4 6 9 4 0.84 1.50 0.67
Man United 5 6 9 10 0.79 1.50 1.67
Tottenham Hotspur 6 6 11 9 0.74 1.83 1.50
Aston Villa 7 6 10 8 0.68 1.67 1.33
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follows (see bottom part of Table  6): scrt,6(ManCity) = 2.33 , cont,6(ManCity) = 0.67 , 
rt,6(ManCity) = 0.95 , scrt,6(Liverpool) = 2.17 , cont,6(Liverpool) = 0.17 and 
rt,6(Liverpool) = 0.89.

The homeaway features set includes the total feature set (upper part of Table 7) based on 
the teams’ n recent total matches as well as the aggregated values for goals scored, goals 
conceded, and normalized rank of each team over n/2 recent home and away matches, 
respectively. The reason to have both the total as well as the home and away records in 
this feature set is that we capture both the total performance and have also an explicit rep-
resentation of the teams’ home and away performance. Moreover, we strike a compromise 
between the venues and time periods covered for total and home and away team perfor-
mances. The basic intention of such a redundant feature representation is that the learning 
algorithm should find the optimal balance between these important soccer aspects.

The value for the total features based on n recent matches is not necessarily a combi-
nation of the two sets of n/2 matches for home and away matches of a team. To illustrate 
this point, consider Tables 3 and 4. The n = 6 recent total matches of Liverpool (Table 4) 
cover exactly Liverpool’s n∕2 = 3 home and n∕2 = 3 away matches. Thus, the aggre-
gated features of the recent three home and three away matches correspond directly to the 
aggregated features over n = 6 recent total matches. This is different for Man City, though 
(Table 3). While the n = 6 recent total matches include the n∕2 = 3 recent away matches 
of Man City, Man City’s three recent home matches are not fully covered by the n = 6 total 
matches (only 2 of these 3 matches are included). Therefore, the total feature aggregates 
are not directly obtained from the home and away aggregates.

Table 7  Top 6 rows: total feature set consisting of 6 features based on all (home and away combined) n 
recent matches of a team

All 18 rows: Homeaway feature set adding features separately calculated for a team’s n/2 recent home and 
away matches, respectively

Feature Description

scr
t,n(H) Home team’s average goals scored over n recent total matches

con
t,n(H) Home team’s average goals conceded over n recent total matches

r
t,n(H) Home team’s average normalized rank over n recent total matches
scr

t,n(A) Away team’s average goals scored over n recent total matches
con

t,n(A) Away team’s average goals conceded over n recent total matches
r
t,n(A) Away team’s average normalized rank over n recent total matches
scr

h,n∕2(H) Home team’s average goals scored over n/2 recent home matches
con

h,n∕2(H) Home team’s average goals conceded over n/2 recent home matches
r
h,n∕2(H) Home team’s average normalized rank over n/2 recent home matches
scr

h,n∕2(A) Away team’s average goals scored over n/2 recent home matches
con

h,n∕2(A) Away team’s average goals conceded over n/2 recent home matches
r
h,n∕2(A) Away team’s average normalized rank over n/2 recent home matches
scr

a,n∕2(H) Home team’s average goals scored over n/2 recent away matches
con

a,n∕2(H) Home team’s average goals conceded over n/2 recent away matches
r
a,n∕2(H) Home team’s average normalized rank over n/2 recent away matches
scr

a,n∕2(A) Away team’s average goals scored over n/2 recent away matches
con

a,n∕2(A) Away team’s average goals conceded over n/2 recent away matches
r
a,n∕2(A) Away team’s average normalized rank over n/2 recent away matches
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Finally, the two feature sets (total, homeaway) used in our study depend on the number 
n of recent matches used to compute the feature aggregate (mean) values. In our modeling 
approach, n is viewed as a hyperparameter. In order to find an optimal value for n, we have 
employed two procedures: Pearson’s correlation and k-nearest neighbors (k-NN).

To determine the optimal n, we generated the full homeaway feature set consisting of 
18 features (Table 7) for each of the 51 super leagues from the training set for all n-values 
from n = 9 to n = 100 . This means, for each of the 51 super leagues, we have generated 92 
datasets, each containing 18 features based on the corresponding n-value. In these data-
sets, the total features are computed based on the n recent total, n/2 recent home and away 
team performances, respectively. For each of the 51 collections of 92 n-dependent feature 
datasets, we determined the optimal values of n using two approaches (Pearson, k-NN) as 
follows.

The Pearson correlation approach was realized first because of its computational 
efficiency. This meant that some of our machine learning models could be completed and 
deployed in time before the Challenge deadline. For each of the 51 super league training 
sets, each consisting of 92 n-specific feature training sets, we computed the following two 
“derived” features: 

1. Difference of the average total goal difference: the home team’s aver-
age total goal difference minus the away team’s average total goal difference, 
Δgdit,n(HA) = gdit,n(H) − gdit,n(A).

2. Difference of the average total goals scored: the home team’s average total goals scored 
minus the away team’s average total goals scored, Δscrt,n(HA) = scrt,n(H) − scrt,n(A).

We chose these two features after some experimentation. The difference of the (average) 
goal difference, Δgdit,n(HA) , captures the combined goal scoring and conceding perfor-
mance of the two teams facing off in a match. A positive value is an indicator for the home 
team to score more goals than the away team in the current match (i.e., a home win). A 
negative value suggests that the away team will score more goals than the home team (i.e., 
an away win). A value near zero points to the same number of goals scored by each team 
(i.e., a draw). The difference of the (average) goals scored, Δscrt,n(HA) , provides a comple-
mentary (and somewhat redundant) view. However, it captures one of the most essential 
performance dimensions of a soccer team, namely the ability to score goals. Similar to 
Δgdit,n(HA) , a positive value favors a win of the home and a negative value a win of the 
away team, respectively, and a value near zero is an indicator for a draw. Both derived fea-
tures are expected to be positively correlated with the observed goal difference in soccer 

Table 8  Statistics from 
determining the optimal value for 
n using the Pearson correlation 
and k-NN approaches

Statistic nPearson nkNN,Result nkNN,Score

Minimum 13 13 15
Maximum 100 100 100
Mean 55.98 50.98 49.07
Standard deviation 25.32 24.44 23.06
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matches.3 We exploit this positive correlation property in the Pearson approach to deter-
mine an optimal recency value nPearson,L for a super league L. This is done by comput-
ing the Pearson correlation of the sum of Δgdit,n(HA) and Δscrt,n(HA) with the observed 
goal difference Δs(H,A) across each n-specific datasets in a given league. For example, for 
the ENG1 super league, we determined the optimal value as nPearson(ENG1) = 60 . Table 8 
shows the statistics of the n values for the 43 super leagues in the prediction set that were 
subject to the final Challenge evaluation. For two super leagues (CHL1 and POR1), the 
maximum preset range value of n = 100 was reached.

The k-NN approach to determine the optimal n for each super league was performed 
after the deadline of the Challenge. Here, we did not use derived features but employed 
all six total features (top 6 rows in Table 7). Also, only the 44 super leagues featuring in 
the Challenge prediction set were subject to this procedure because the subsequent mod-
eling phase was performed separately for each super league. For each of the 44 super 
leagues, each of the 92 n-specific datasets was used to learn the optimal k in a leave-
one-out cross-validation procedure. All k-values from 3 to 350 were tested. The datasets 
corresponding to the values of n that produced the lowest error (RPSavg and RMSE, 
respectively) were selected for downstream modeling. This process resulted in optimal 
n and k values both for score and result prediction for each super league. For example, 
for the ENG1 super league, we determined the optimal value as nkNN,Score(ENG1) = 42 
and nkNN,Result(ENG1) = 44 , respectively. The latter is illustrated in Fig. 2. Table 8 shows 
some statistics for the n values for both the result and score predictions derived with the 
k-NN approach across all 44 super leagues. The maximum value of n = 100 was reached 
once for result (POR1 league) and for score (CHL1 league).

The Challenge training set consists of 302 691 matches. After generating the feature 
sets (homaway and total) separately for each of the 51 super leagues in the training set, 
the total number of matches were reduced to 292 325 . The reason for this is that the time 
series of each team in a super league starts at some point in all the seasons covered in 
a super league. This means that for the first few matches of each team, there are only 
a handful of recent matches in the database. Thus, after calculating the features for a 
super league, we discarded those matches in which one or both teams had fewer than six 
prior matches. This led to a loss 10 366 (3.43%) matches from the training set.

6  Overview of reference models and machine learning models

Using the feature datasets (total and homeaway) generated by the framework, we have 
investigated various models for both Challenge tasks, that is, score and result prediction. 
These models can be divided into two groups: machine learning and reference models. 
The machine learning models are designated by the prefix “DeepFoot,” which was our 
chosen team name. The machine learning models are the following:

• DeepFoot-KNN and DeepFoot-KNN2 are k-nearest neighbors models based on the 
total feature set (top six rows Table 7).

3 The goal difference of a single match, Δs(H,A) , is defined in an “asymmetric” way as follows: 
Δs(H,A) = s(H) − s(A) , where s(H) and s(A) denote the observed goals scored by the home (H) and away 
(A) team, respectively.
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• DeepFoot-ANN refers to feedforward artificial neural networks based on the total 
feature set.

• DeepFoot-OF128-18 and DeepFoot-OF128-6 models, which are based on ordinal 
forests with 128 trees using the homeaway and the total feature set, respectively 
(Table 7);

• DeepFoot-NB6 and DeepFoot-NB18 models, which are based on a naive Bayes 
classifier using the homeaway and the total feature set, respectively;

• DeepFoot-NB-183|816 models, which collectively denotes 816 different naive Bayes 
classifiers that use all possible combinations of three features from the homeaway 
feature set;

• DeepFoot-NB-184|3060 models, which collectively denotes 3060 different naive Bayes 
classifiers that use all possible combinations of four features from the homeaway fea-
ture set.

For each super league, the final DeepFoot-KNN models are based on the n-specific 
datasets identified by the Pearson method. The final DeepFoot-KNN2 and DeepFoot-
ANN models are based on the n-specific datasets identified by the k-NN method. All 
other final models are based on the n-specific datasets identified by the Pearson recency 
method. But instead of developing separate models for each super league, these models 
combined the n-specific datasets into a single large meta league dataset to develop a 
single model for each task.

We also developed three types of reference models:

• Null-1 and Null-N reference models are essentially null models based on the 
distribution of result probabilities and average scores derived from the original 
Challenge training set;

• Baseline-1 and Baseline-N reference models use statistics of some team performance 
categories computed from the original Challenge training set;

• Bookmakers’ reference models are based on odds from multiple bookmakers for scores 
and results of the matches in the prediction set.

Table 9  Examples of reference model predictions for two ENG1 matches

s(H) and s(A) denote observed home/away goals; ŝ(H) and ŝ(A) predicted home/away goals; Result the 
observed result; ŷ

1

 , ŷ
2

 and ŷ
3

 the predicted probabilities for win, draw and loss

Ref. model Home team (H) Away team (A) s(H) s(A) ŝ(H) ŝ(A) Result ŷ1 ŷ2 ŷ3

Null-1 Liverpool Nottingham 3 2 2 1 Win 0.48 0.24 0.28
Null-1 Leeds Liverpool 1 6 2 1 Loss 0.48 0.24 0.28
Null-N Liverpool Nottingham 3 2 2 1 Win 0.46 0.25 0.29
Null-N Leeds Liverpool 1 6 2 1 Loss 0.46 0.25 0.29
Baseline-1 Liverpool Nottingham 3 2 2 1 Win 0.45 0.27 0.27
Baseline-1 Leeds Liverpool 1 6 1 2 Loss 0.27 0.25 0.47
Baseline-N Liverpool Nottingham 3 2 2 1 Win 0.51 0.28 0.21
Baseline-N Leeds Liverpool 1 6 1 2 Loss 0.29 0.23 0.48
Bookmakers Liverpool Nottingham 3 2 2 0 Win 0.81 0.13 0.06
Bookmakers Leeds Liverpool 1 6 1 2 Loss 0.22 0.22 0.55
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Neither the null nor the baseline models use any form of optimization.
We first discuss the three types reference models that we implemented to provide a base-

line for the machine learning predictions. Then, we describe our machine learning models.

7  Reference models

Based on the ENG1 matches with the IDs 148 and 154 from the prediction set, Leeds 
versus Liverpool, and Liverpool versus Nottingham, we illustrate the various predictions 
from the reference models in Table 9.

7.1  Null models

The null models Null-1 and Null-N derive their predictions on a league-by-league basis. 
Null-1 considers only the last season (which corresponds to the season of the matches in 
the prediction set) of each league in the training set. Null-N takes into account all seasons 
of a given league covered in the training set. Theses choices, last and all seasons per league, 
are two obvious candidates. We could have performed certain analyses to determine the 
optimal number of seasons (or recent matches per team) to find some optimal prediction, 
but we wanted to avoid any type of learning or optimization in the null and baseline 
reference models. Each of the two null models performs the same type of calculation to 
predict the scores and results in the prediction set, the only difference is the number of 
seasons covered (last and all).

The score prediction null models simply take the average number for the goals scored 
by the home and away team over the considered season(s) and round these to the nearest 
integer. For example, for the Null-1 model, we considered the most recent (incomplete) 
season of the ENG1 league in the training set. In this season, the average goals scored by 
the home and away teams were 1.62 and 1.13, respectively. Rounding these to the next 
integers, we obtain 2 and 1, respectively. Thus, the Null-1 model predicts a 2–1 score for 
all ENG1 matches in the prediction set (see top two rows in Table 9). The Null-N model 
works in a similar way, except that it processes all 23 ENG1 seasons covered in the training 
set and obtains the average scores of 1.52 and 1.16, respectively. Like the Null-1 model, the 
Null-N (after rounding) predicts a 2–1 home win for all ENG1 matches in the prediction 
set (Table 9 rows 3 to 4).

Similar to the score prediction null models, the result prediction null models simply 
determine the proportion of home wins, draws, and away wins in the corresponding 
training set (last season for Null-1 and all seasons for Null-N model) to estimate the win, 
draw and loss probabilities. For example, for all ENG1 matches in the prediction set we get 
the following result prediction for win, draw, loss: (0.48, 0.24, 0.28) from the Null-1 and 
(0.46, 0.25, 0.29) from the Null-N model, respectively (top 4 rows in Table 9).

7.2  Baseline models

Like the null models, the two baseline models we employed consider the last, i.e., most 
recent season (Baseline-1), and all seasons (Baseline-N) separately for each league in 
the training set. However, unlike the null models which predict the same outcome for all 
prediction set matches within a given league, the baseline models take into account the 
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performances of each team to predict the outcome of each match in the prediction set 
individually.

For score predictions, the baseline models determine the average goals scored and 
conceded of each team in the corresponding training set and calculate the average expected 
(predicted) score.

Let H denote the home team and A denote the away team facing off in a match. Fur-
thermore, let scrt(H) and scrt(A) denote the total number of goals scored, and cont(H) and 
cont(A) the total number of goals conceded (over the seasons covered in the training sets) 
by the home and away teams, respectively. The terms nt(H) and nt(A) refer to the total num-
ber of matches each team has played. Then, the predicted match score, expressed as the 
pair (ŝ(H), ŝ(A)) , is calculated using Eqs (6) and 7. The notation ⌊⌉ denotes the rounding to 
the next integer.

Equations (6) and (7) apply to both Baseline-1 and Baseline-N. The predictions that these 
models make are different because they are using different subsets from the training set. 
Rows 5 to 8 in Table 9 illustrate the score predictions of the two baseline models for two 
ENG1 league matches. Unlike the null models, the baseline models do not predict the same 
score for all matches within a league. Also, in the case of the two matches, both baseline 
models agree on the identical final (rounded) score per match.

The result prediction of the baseline models follows a similar rationale as the score 
prediction. Instead of looking at the goals, the baseline models for result prediction 
calculate the proportions of the three possible result categories (win, draw, loss) based on 
the teams’ winning, drawing, and losing performance in the corresponding league-specific 
training sets.

Let H and A refer to the home and away team, respectively, facing off in a match. Fur-
ther, let wint(H) , drwt(H) and lost(H) denote the total number of matches which the home 
team has won, drawn, and lost, within the considered seasons in the corresponding training 
set. Similarly, let wint(A) , drwt(A) and lost(A) denote the total number of matches which the 
away team has won, drawn, and lost. The terms nt(H) and nt(A) refer to the total number 
of matches of each team in the training set. Then, the predicted match result, expressed as 
the probability vector (ŷ1, ŷ2, ŷ3) , is calculated using Eqs. (8) to (10). In these equations, ŷ1 
denotes the predicted probability for a win, ŷ2 a draw, and ŷ3 a loss.

(6)ŝ(H) =

⌊
1

2

(
scrt(H)

nt(H)
+

cont(A)

nt(A)

)⌉

(7)ŝ(A) =

⌊
1

2

(
cont(H)

nt(H)
+

scrt(A)

nt(A)

)⌉

Table 10  Top 5 lowest average 
decimal odds from at least 10 
bookmakers for ENG1 match 
Man City versus Liverpool

Score Average odds Implied probability 
of score

# Bookmakers

1–1 8.80 0.1136 12
2–1 9.40 0.1064 12
1–0 10.00 0.1000 13
2–0 10.00 0.1000 11
3–1 14.00 0.0714 10
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Rows 5 to 8 in Table  9 illustrate the result predictions of the two baseline models for 
two ENG1 league matches. The examples illustrate that unlike the null models’ result 
predictions, the baseline models’ result predictions are not identical for all matches within 
a given league. Also, the two baseline models produce different result predictions in the 
case of the two example matches.

7.3  Bookmakers’ models

We investigated how predictions based on the odds that bookmakers provide would fare in 
the two tasks of the Challenge. We use the term “bookmakers’ model” to refer to the score 
and result reference models derived from bookmaker odds.

The score predictions of the bookmakers’ score model are based on the average decimal 
odds from multiple bookmakers.4 Typically, bookmakers cover all scores involving up 
to five goals by each team. For example, for the ENG1 match between Man City against 
Liverpool on April, 2023, the five scores with the lowest average decimal bookmaker odds 
and the derived implied probabilities are depicted in Table 10.

For a given match, we identified the score with the lowest average decimal odds 
(corresponding to the highest implied probability) as the predicted score for that match. For 
example, for ENG1 match between Man City and Liverpool, the lowest averaged decimal 
odds were 8.80 for a 1–1 score (top row in Table 10). Thus, we determined the score of 1–1 
as the prediction of the bookmakers’ model.

For the bookmakers’ result predictions, we processed the average odds from multiple 
bookmakers for the three result classes win, draw, and loss. The mean number of book-
makers’ odds per match for the 714 matches in the final prediction set were 13.11, with a 
standard deviation of 3.23. For 653 of the 714 matches, we had the decimal odds of at least 
10 bookmakers. Thus, the odds that we used are thought to be reasonably robust. Given 
the average bookmaker odds, oj , for the result category j, we normally obtain an estimate 
of the “implied” probability, ŷj , as follows: ŷj = 1∕oj , where the index j corresponds to the 
result categories win, draw and loss, respectively. However, generally probabilities derived 
in this way are deliberate overestimates to ensure that the bookmakers make a profit. For 
example, the bookmakers’ average decimal odds for the result of the match Leeds versus 
Liverpool from the prediction set were given as o1 = 4.37 , o2 = 4.30 , and o3 = 1.74 . Based 

(8)ŷ1 =
1

2

(
wint(H)

nt(H)
+

lost(A)

nt(A)

)

(9)ŷ2 =
1

2

(
drwt(H)

nt(H)
+

drwt(A)

nt(A)

)

(10)ŷ3 =
1

2

(
lost(H)

nt(H)
+

wint(A)

nt(A)

)

4 Decimal odds are a common way to express odds in sports betting. They represent the potential return on 
a bet for every unit staked, including the original stake. Decimal odds are expressed as a decimal number 
greater than 1. For example, if one bets $10 on a 1–1 score for which the decimal odds of 8.80 are given, 
one receives $88 if the prediction is correct.
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on these, the sum of the implied probabilities would be approximately 1.04. To account 
for this effect, and to ensure a probability sum of 1, we calculated the probabilities for the 
three result classes by dividing the implied probability of each class by the sum of all three 
implied probabilities.

For a given match, let oj denote the average decimal odds from multiple bookmakers for 
the result, such that j = 1 corresponds to the result category win, j = 2 to draw, and j = 3 
to loss, respectively. Then the predicted probability, ŷj , for the result category j is calcu-
lated using the Eq. (11).

See rows 9 to 10 in Table 9 for an illustration of the score and result predictions made by 
the baseline models, and Tables 13 and 14 on how these models fared in terms of their pre-
diction performance in the Challenge (Rank column) and in relation to our machine learn-
ing models (RMSE and RPSavg columns).

8  Machine learning models

8.1  k‑nearest neighbors classifier

The k-nearest neighbors (k-NN) algorithm is one of the simplest and oldest supervised 
learning algorithms (Cover & Hart, 1967; Wu et  al., 2008). To classify an unknown 
test case, the k-NN identifies the k nearest neighbors from the training set, that is, those 
k training cases that are closest to the test case based on some measure of distance or 
similarity of the predictive features (Berrar et al., 2006). The main advantages of the k-NN 
include its conceptual simplicity, its straightforward approach to determine both the score 
and result prediction from the identified k nearest neighbors, and its approach to learning. 
Essentially, learning in k-NN takes place when new cases with known outcomes are added 
to the case base. The final step is the optimization of the hyperparameter k. Depending 
on the size of the data and the concrete tuning approach, this step can be computationally 
expensive.

In this study, we produced two sets of k-NN models, DeepFoot-KNN and DeepFoot-
KNN2, each consisting of a score and result prediction model. Both k-NN model sets 
use the total feature set produced in the feature generation phase for each of the 51 
super leagues in the Challenge training set. Because both types of k-NN models as well 
as the ANN model are trained separately for each super league, only the 44 datasets 
corresponding to the leagues in the prediction set were needed.

For the DeepFoot-KNN models, which were completed in time for the Challenge dead-
line, the dataset with the optimal recency depth nPearson(L) , corresponding to the 44 super 
leagues (L) in the prediction set, was used. For the DeepFoot-KNN2 models, which were 
completed after the deadline, we used the k-NN algorithm itself to determine two separate 
recency values for score and result prediction, respectively ( nkNN,Score(L) and nkNN,Result(L)).

For each of the 44 DeepFoot-KNN models, we had exactly one single training set 
with six total features, each corresponding to a single recency value nPearson(L) . For these 
n-specific training sets, we carried out a leave-one-out cross-validation (LOOCV) proce-
dure for all k-values from 3 to 350. These k-limits were chosen after some exploratory 

(11)ŷj =
1∕oj

∑3

i=1
(1∕oi)
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experimentation. After this process, we had one k-NN model for each of the 51 super 
leagues, each consisting of the following components: (1) A case base consisting of the 
n-specific feature dataset determined by the Pearson method. (2) Optimal k-values, kScore(L) 
and kResult(L) , for predicting match scores and results, respectively. For example, for the 
ENG1 super league, we used the feature training set corresponding to the recency value 
nPearson(ENG1) = 60 and determined the two optimal k-values for the score and result 
model as follows: kScore(ENG1) = 211 and kResult(ENG1) = 154.

For each of the 44 DeepFoot-KNN2 models, we employed LOOCV to determine both 
optimal n-values for both score and result prediction, nkNN,Score(L) and nkNN,Result(L) , while 
at the same time determining optimal k-values for score and result, kScore(L) and kResult(L) . 
However, unlike in the DeepFoot-KNN model, which is based on a single training set per 
super league, we applied LOOCV for all k-values from 3 to 350 for each of the 92 train-
ing sets which had been generated for recency values from n = 9 to n = 100 . After this 
procedure we had the following elements for each of the 44 super leagues: (1) Two case 
bases, each consisting of the n-specific feature dataset determined by k-NN for score and 
result prediction, respectively, based on optimal values of nkNN,ScoreL and nkNN,Result(L) . 2) 
Optimal k-values, kScore(L) and kResult(L) , for predicting match scores and results, respec-
tively. It took approximately two weeks to complete this process for all 44 super leagues on 
a standard modern PC (i7 processor, 64 GB memory, Windows 10, implementation in R). 
For example, for the ENG1 super league, we obtained the following results: (1) Recency 
values: nkNN,Score(ENG1) = 42 and nkNN,Result(ENG1) = 44 (for the latter, see also Fig. 2). 
(2) Optimal k-values: kScore(ENG1) = 59 and kResult(ENG1) = 298.

Since the procedure used for the DeepFoot-KNN2 models is computationally very 
expensive, the DeepFoot-KNN2 models could not be completed before the Challenge 
deadline.

Tables 13 and 14 show the final prediction performance of the k-NN models. We used 
the K-D algorithm implemented in the R package Fast Nearest Neighbor Search Algorithms 
and Applications (FNN) (Beygelzimer et al., 2024) to implement the k-NN models.

8.2  Neural networks

We developed two multilayer perceptron models for the score and result prediction tasks. 
The models were trained separately for each of the 44 super leagues of the prediction set 
based on the total feature set consisting of six features (top part of Table 7).

The architecture of the ANN score model has 6 nodes in the input layer, 2 in the single 
hidden layer, and 2 in the output layer. Each node in the hidden layer receives 6 inputs 
from the input layer plus one input from a bias node x0 . The 2 nodes in the output layer 
receive their inputs from the outputs of the corresponding hidden layer. The 2 output layer 
nodes represent the decimal score prediction which are rounded to the next integer after the 
model training is complete.

Let the vector (x0, x1, ..., x6)|xi ∈ ℝ
+ define the bias node ( x0 = 1 ) and the six input 

nodes ( x1, ..., x6 ) of the ANN score model, such that ( x1, ..., x6 ) correspond to the six total 
features. Further, let the vector (w0,H ,w1,H , ...,w6,H)|wi,H ∈ ℝ and aH ∈ ℝ

+ denote the 
parameters of the hidden node corresponding to the predicted home score, and the vector 
(w0,A,w1,A, ...,w6,A)|wi,A ∈ ℝ and aA ∈ ℝ

+ to the predicted away score, respectively. Then, 
the predicted decimal home ŝ(H) ∈ ℝ

+ and away ŝ(A) ∈ ℝ
+ scores of a match are calcu-

lated using the activation functions shown in Eqs. (12) and (13).
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The values of the six inputs in Eqs. (12) and (13) refer to the six total features shown in the 
top part of Table 7. These features always assume positive values including zero. Similarly, 
the parameters aH and aA represent the maximal values for the goals scored and therefore 
are limited to positive numbers including zero.

The ANN score model predicts a match score consisting of two positive decimal num-
bers including zero. These decimal scores are used in the training phase to optimize the 
model parameters using the RMSE criterion. Once training is complete, the final predicted 
scores are obtained by rounding the decimal scores to the next integer. Thus, the final pre-
dicted score is defined as ŝ(H)∶=⌊ŝ(H)⌉ and ŝ(A)∶=⌊ŝ(A)⌉.

The result ANN model architecture is similar to the score ANN model but uses three 
nodes in the hidden layer and output layer, respectively, each corresponding to one of the 
three result categories. Furthermore, the three outputs are subject to a softmax conversion 
to scale the outputs to a proper probability vector. In the training phase, the probability 
vector for result prediction is evaluated against the observed result, which is represented as 
a hotvector, using the RPS scoring rule (Eq. (2)).

Let the vector (x0, x1, ..., x6)|xi ∈ ℝ
+ define the bias node ( x0 = 1 ) and the six input 

nodes ( x1, ..., x6 ) of the ANN result model, such that ( x1, ..., x6 ) correspond to the six total 
features. Further, let the vector (w0,1,w1,1, ...,w6,1)|wi,j ∈ ℝ and aR ∈ ℝ denote the param-
eters of a hidden node corresponding to the result category j, such that j = 1 denotes the 
result category win, j = 2 draw, and j = 3 loss, respectively. Then, the predicted probabil-
ity, ŷj , for the result category j is calculated using Eqs. (14) and (15).

We adopted a straightforward “ensemble parameter averaging” approach to train the 
ANN models for score and result prediction. One of our main motivations for adopting 
this approach was the high variance of the test error in cross-validation. This technique 
is conceptually different from bagging (Breiman, 1996). In bagging, multiple independent 
base models are trained, and their predictions are averaged or voted upon. In model 
averaging, the parameters of the models themselves are averaged to create a single final 
model (Wortsman et al., 2022). The advantage of this approach is its conceptual simplicity 
and the expectation that the final model achieves a good bias-variance tradeoff. Another 
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advantage is that there is no final model learning phase based on the entire dataset, as it 
would be the case in a conventional n-fold cross-validation procedure. The final model is 
calculated from the average of the parameters from each individual model training fold.

Our approach to model training and validation was as follows. For each of the 44 super 
leagues featuring in the prediction set, we performed the four main steps based on the same 
ANN model architecture for score and result prediction, respectively. 

Step 1:  Repeat Steps 1a to 1c ten times.
Step 1a:  Split the data randomly into training and test set.
Step 1b:  Train model until at least one convergence criterion is met.
Step 1c:  Record train and test errors and individual model parameters.
Step 2:  Calculate average training and test errors.
Step 3:  Determine final parameters as average over 10-fold training.
Step 4:  Use final model to predict prediction set matches.

Step 1a makes sure that each of the ten individual model training runs had a different 
setup in terms of training and test data. In addition, all model weights were initialized ran-
domly in line with the parameter constraints mentioned above.

Step 1b trains the model based on a random split of the entire dataset into training and 
test set using a split ratio of 0.85/0.15. We implemented the back-propagation training 
algorithm as a stochastic gradient descent (SGD) optimization procedure (Rumelhart et al., 
1986; Tian et al., 2023). The SGD method computes the gradient of the cost with respect to 
the model’s output (score or result prediction), which essentially represents how much the 
output would need to change to minimize the error. This gradient of the cost is propagated 
backward through the network and used to update the model parameters. SGD performs an 
update of each parameter �j for each training instance using the following update rule:

where �j represents a model parameter, � is the learning rate, and J is the cost function. 
Unlike batch and mini-batch gradient descent, SGD updates the weights using only a sin-
gle training example in each iteration, hence the notation x(i) and y(i) denoting the predic-
tors and observed outcome of instance i, respectively. After extensive experimentation, the 
learning rate in our implementation was set to � = 0.25.

As the algorithm sweeps through the training set, it performs the parameter update for 
each training sample. Several passes can be made over the training set until the algorithm 
converges. After some experimentation, we employed two convergence criteria; the 
training was terminated once one of the two criteria was met. Criterion 1: stop if for 10 
iterations the model error has not decreased. Criterion  2: stop after a maximum of 200 
iterations has been reached. Most of the time, criterion 1 was reached first.

Step 1c memorizes the optimized parameters of each iteration and the relevant overall 
model errors. For the score model, the optimized RMSE based on decimal scores was kept 
for both training and test sets, as well as the RMSE resulting after rounding of the decimal 
scores to the next integer for the test set. For the result model, the RPSavg for both training 
and test sets at each iteration was memorized.

In Step 2, the average errors over the ten training/test runs were computed and stored. 
Step  3 simply calculates the average of all parameters obtained in the individual runs 

(16)�j ← �j − �
�

��j

J(�;x(i);y(i))
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and stores these. These parameter averages constitute the parameters of the final model 
(Step 4).

8.3  Ordinal forests

Ordinal forests are a special type of regression forests in which the ordinal class variable 
is treated as a continuous variable (Theißen et  al., 2020, Hornung, 2020). In contrast to 
regression trees (Breiman, 2001), the class values are replaced by score values that maxi-
mize the out-of-bag prediction performance. Training an ordinal forest involves the follow-
ing steps. First, several thousands of candidate score sets are generated by repeated random 
sampling. For each score set, a regression forest is fitted for the class values of the target 
class, and the out-of-bag prediction error is calculated based on a user-defined performance 
metric. Second, the final score is calculated based on those score sets that resulted in the 
best out-of-bag performance. Finally, using the final score set for the target class values, a 
regression forest is fitted. In our ordinal forests models, we used the RPS as the cost func-
tion (Eq. 2).

We chose ordinal forests for the following two reasons. First, regression trees, or ran-
dom forests more generally, have shown remarkable performance across a wide range of 
applications with tabular data, for which they generally outperform even deep learning 

Fig. 1  a Frequency of the 32 filtered match score in the Challenge training set. b Encoding of the outcomes 
for ordinal classification
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(Grinsztajn et al., 2022). Second, ordinal forests deal effeciently with ordinal class values. 
In ordinal classification problems, misclassifications can be more or less severe. For exam-
ple, if the possible class labels are “win”, “draw”, and “loss”, misclassifying a real “win” 
as “draw” is obviously less severe than misclassifying it as “loss”.

To train the ordinal forest models, we used the feature training set (consisting of 18 
homeaway features) based on the optimal n-value from the Pearson method. This dataset 
contains n = 292 325 matches. We pre-processed the data as follows. First, the score was 
converted into a discrete class label. This resulted in a total of 85 discrete classes, includ-
ing some extremely rare classes, such as 0–13, which occurred only once. We decided to 
exclude such extremely unlikely events, as our available computing hardware was insuf-
ficient for an effective training of ordinal forests with that many classes. We discarded all 
matches whose outcomes occurred in fewer than 293 of 292 325 matches or 0.1%, leaving 
289 960 matches with 32 discrete outcomes for further analysis. Figure  1a shows a fre-
quency plot of the classes. By far the most frequent classes are 1–1 and 1–0, making up 
almost one quarter of all outcomes.

The match outcomes needed to be discretized into classes prior to supervised learning. 
The classification task is of an ordinal nature; clearly, predicting a real 1–1 outcome as 1–0 
is better than predicting it as 0–1. Our next problem was therefore to find a class-encoding 
that, at least approximately, reflects the ordinal relation of the scores in a meaningful way. 
However, there exists no unique ordering of scores that is consistent with soccer domain 
knowledge. Among the filtered 32 outcomes, 6–0 and 0–5 are as far apart as possible, and 
therefore it makes sense to encode them as 1 and 32, respectively; thereby, the distance 
between these two classes is maximized. But it is less obvious how to encode the outcomes 
between those two extremes; for example, how should the scores 2–5, 1–4, and 0–3 be 
ordered? Each goal difference is 3, but it is not clear which result represents a more 
decisive victory for the away team. However, what matters is that the encoding minimizes 
the distance between similar classes while maximizing the distance between dissimilar 
classes, at least approximately. Figure 1b shows the encoding that was used to train the 
ordinal forest.

From the feature training set, we then randomly sampled 30 000 matches (approximately 
10%) for the test set and used the remaining 259 960 matches for the training set. The 
ordinal forest was trained with nscore = 100 score sets, from which the 10 best were then 
selected for the score set to train the final regression forest. For each score set, a regression 
forest with ntree,1 = 10 regression trees was built. Using the optimized score set, a larger 
regression forest with ntree,2 = 128 trees was fitted to the training set and then applied to the 
test set. Training an ordinal forest with these parameters took more than 12 h on a standard 
PC with 32 GB RAM and seven Intel i7-7700T CPUs. A larger number of trees generally 
improves model stability, but more than 128 trees led to system crashes. For the Challenge, 
we therefore did not perform any further fine-tuning of the model parameters. We used the 
six total features (cf. Table 7, top six rows) for DeepFoot-OF128-6 and 18 homeaway fea-
tures for DeepFoot-OF128–18.

Table 11  Results of the ordinal 
forests on the tests set and 
prediction set

Test set Prediction set

RMSE RPSavg RMSE RPSavg

DeepFoot-OF128-6 1.8261 0.2140 1.8805 0.2186
DeepFoot-OF128-18 1.7681 0.2117 1.8277 0.2150
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For each match in the test set, the ordinal forest models produce probabilities for each 
of the 32 outcomes, which were used to address score and result prediction. The predic-
tion of exact scores was based on the maximum class probability. For example, if class 
11 achieved the highest probability, then the outcome 2–0 was predicted (cf. Fig. 1b). For 
the prediction of match results in terms of probabilities of win, draw, and loss, the calcu-
lated probabilities were simply added accordingly: the probability of win is the sum of all 
probabilities for the outcomes 6–0, 5–0, 6–1,..., 4–3; the probability of draw is the sum 
of all probabilities for the outcomes 0–0, 1–1, 2–2, and 3–3; and the probability of loss is 
the sum of all probabilities for the outcomes 3–4, 2–3, 1–2,..., 0–5. This approach, how-
ever, can lead to predictions that at first seem inconsistent. For example, the match Forest 
Green versus York City (ENG5 league, played on 02/12/2006) ended 0–1. The ordinal for-
est produced the highest class probability of 0.1051 for the outcome 0–0, a draw. However, 
the probabilities of win, draw, and loss are 0.2603, 0.2434, and 0.4963, respectively—the 
probability of loss is the largest, although 0-0 is the most probable score.

Table 12  Results of the naive 
Bayes classifier on test and 
prediction set

From DeepFoot-NB-18
3|816 and DeepFoot-NB-18

4|3060 , the models 
that performed best on the test set were selected and then applied to 
the prediction set
Models marked by * were completed after the Challenge deadline
Best results are shown in bold face

Test set Prediction set

RMSE RPSavg RMSE RPSavg

DeepFoot-NB-6 1.7798 0.2183 1.8406 0.2247
DeepFoot-NB-18* 2.1309 0.2546 2.2573 0.2689
DeepFoot-NB-183|816* 1.6895 0.2150 1.7461 0.2155
DeepFoot-NB-184|3060* 1.7023 0.2137 1.7417 0.2159

Table 13  The score prediction (Challenge Task  1) models sorted by the leader board position (Rank) 
among all Challenge participants

Models marked by the star symbol (*) were completed after the Challenge deadline. In total, 26 models are 
ranked

Model RMSE League Feature set # Features Rank

DeepFoot-KNN2* 1.6227 Super League Total 6 1
DeepFoot-KNN 1.6339 Super League Total 6 3
DeepFoot-ANN* 1.6479 Super League Total 6 4
Baseline-N 1.6653 Super League n/a n/a 7
Baseline-1 1.6682 League n/a n/a 8
Null-1 1.6757 League n/a n/a 9
Null-N 1.6862 Super League n/a n/a 10
DeepFoot-NB-184|3060* 1.7417 Meta League Homeaway 4 13
Bookmakers* 1.7433 n/a n/a n/a 14
DeepFoot-NB-183|816* 1.7461 Meta League Homeaway 3 15
DeepFoot-OF128-18 1.8277 Meta League Homeaway 18 19
DeepFoot-NB-6 1.8406 Meta League Total 6 20
DeepFoot-OF128-6 1.8805 Meta League Total 6 23
DeepFoot-NB-18* 2.2573 Meta League Total 6 26
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Based on the predictions on the test set, the performance measures RMSE and RPSavg 
were then calculated and used as estimates of the performance on the prediction set. Then, 
to predict the matches of the prediction set, the ordinal forest was trained on the entire fea-
ture training set consisting of 292 325 matches. Table 11 shows the results on the test set 
and the prediction set.

DeepFoot-OF128-18 performed slightly better than DeepFoot-OF128-6 on both tasks and 
both the test set and the prediction set.

8.4  Naive Bayes classifier

The naive Bayes classifier belongs to the family of generative classifiers (Duda et al., 2001; 
Webb et  al., 2005; Berrar, 2018). By making the naive assumption that the predictive 
features are statistically independent from each other, the naive Bayes classifier calculates a 
class posterior probability for each case according to Eq. (17),

where xi denotes a case consisting of p predictive features, i.e., xi = (xi1, xi2, ..., xip) . Each 
case is assumed to belong to exactly one class y ∈ {y1, y2, ..., yc} . The predicted class is the 
maximum a posteriori class, and it is calculated as ŷ for the case xi as

(17)ℙ(yj�xi) =
∏p

k=1
ℙ(xk�yj)ℙ(yj)
ℙ(xi)

(18)ŷ = argmax
yj

p∏

k=1

ℙ(xk|yj)ℙ(yj)

Table 14  The result prediction (Challenge Task  2) models sorted by the leader board position (Rank) 
among all Challenge participants

Models marked by the star symbol (*) were completed after the Challenge deadline. In total, 28 models are 
ranked

Model RPSavg League Fature set # Features Rank

Bookmakers 0.2063 n/a n/a n/a 1
DeepFoot-ANN * 0.2113 Super League Total 6 4
DeepFoot-KNN 0.2117 Super League Total 6 6
DeepFoot-KNN2 * 0.2122 Super League Total 6 7
DeepFoot-OF128-18 0.2150 Meta League Homeaway 18 13
DeepFoot-NB-183|816* 0.2155 Meta League Homeaway 3 14
DeepFoot-NB-184|3060* 0.2159 Meta League Homeaway 4 16
DeepFoot-OF128-6 0.2186 Meta League Total 6 19
Baseline-1 0.2199 League n/a n/a 21
Baseline-N 0.2234 Super League n/a n/a 23
Null-N 0.2238 Super League n/a n/a 24
Null-1 0.2242 League n/a n/a 25
DeepFoot-NB6 0.2247 Meta League Total 6 26
DeepFoot-NB18* 0.2689 Meta League Total 18 28
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The naive Bayes classifier was built using the same pre-processed data that we used for the 
ordinal forests (Sect. 8.3). Table 12 shows the results on the test set and the prediction set. 
Only the results of DeepFoot-NB-6 were submitted to the Challenge because we could not 
complete DeepFoot-NB-18 before the Challenge deadline.

After the Challenge deadline, we performed further experiments as follows. For the 
naive Bayes classifier, the only tuning parameter is the number of features. Therefore, from 
the set of p = 18 predictive features, we selected all 

(
18

3

)
= 816 combinations of 3 features 

and built 816 naive Bayes classifiers, collectively referred to as DeepFoot-NB-183|816 , 
which we then applied to the test set. From this set of 816 models, the model with the low-
est RMSE was selected for score prediction, and the model with the lowest average RPS 
was selected for result prediction. We proceeded analogously for all combinations of four 
features and built and applied 

(
18

4

)
= 3060 models, collectively referred to as DeepFoot-

NB-184|3060 . From the set of 3060 naive Bayes models, the two models with lowest average 
RPS and RMSE on the test set were selected and then used to predict the matches in the 
prediction set.

Using only 3 to 4 predictive features improves the performance of the naive Bayes clas-
sifier considerably, compared to the performance based on the full set of 18 features. This 
shows that the computational costs due to the exhaustive search are justified. The worst 
performance is achieved by the naive Bayes classifier using all 18 features. This result is 
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Fig. 2  Illustration of the dependency of the recency value n for result prediction (RPS) for 
n = 9, 10, ..., 100 . ENG1, FRA3, and GER1 refer to the English Premier League, the French National 
League, and the German Bundeliga, respectively. 44 Leagues shows the average for the 44 leagues in the 
Challenge prediction set
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consistent with our theoretical understanding of the naive Bayes classifier: including cor-
related features generally leads to a performance degradation.

9  Results

Table  13 shows the results of our machine learning models and reference models for 
Task 1, the prediction of exact scores. Table 14 shows the corresponding results for Task 2, 
the prediction of results in terms of probabilities for the result categories win, draw, and 
loss. The columns “Feature Set” and “# Features” describe the feature sets that the models 
were trained on and the corresponding number of features, respectively. The column 
labeled “League” relates to the league/season combination found in the training set. Recall, 
each of the 51 leagues featuring in the Challenge training set was processed separately in 
the feature generation phase by pooling all seasons within the league into a super league. 
In the model generation phase, there are two basic options for how to use these 51 separate 
super league feature datasets: (1) Construct the models separately for each of 44 leagues 
featuring in the prediction set, each corresponding to one of the 51 super league datasets. 
This means that we discard the data from 7 of the 51 super leagues in the Challenge training 
set. In Tables 13 and 14, this situation relates to the value Super League in the “League” 
column. (2) Merge all 51 super league datasets into a single dataset referred to as “meta 
league” (corresponding to the Meta League entries in the “League” column). This option 
yields a much larger training set and exploits the data from all 51 leagues, even though 
seven of these do not occur in the prediction set. Finally, the value League in the “League” 
column occurs only for the reference models Null-1 and Baseline-1. Here, the baseline 
predictions are performed separately for each of the 44 leagues featuring in the prediction 
set but only the data of the last season of each league (corresponding to the season in which 
the prediction set matches occur) were used. Clearly, the latter approach is very limited in 
the number of data points that are exploited. Finally, the column “Rank” shows the rank 
that our models achieved in the leader board that contains all valid submissions to the 2023 
Soccer Prediction Challenge.

Overall, our model DeepFoot-KNN2 performed the best for the score prediction Task 1, 
whereas DeepFoot-NB-18 performed the worst. On Task 2, the overall best performance 
was achieved by the bookmakers’ model, and the worst overall performance was achieved 
again by DeepFoot-NB-18. Perhaps surprisingly, our reference models performed 
remarkably well on Task 1 where they achieved the 7th, 8th, 9th, and 10th rank.

10  Discussion

Soccer outcome prediction is a fascinating application for machine learning. Here, we 
presented a new data- and knowledge-driven framework for building machine learning 
models from readily available soccer data to predict match outcomes. We used our 
framework to build predictive models for the 2023 Soccer Prediction Challenge.

In Task 1 of the Challenge (prediction of exact scores), our k-nearest neighbors model 
DeepFoot-KNN2 achieved the top performance. Furthermore, DeepFoot-KNN and 
DeepFoot-ANN were also ranked very high, in 3rd and 4th place, respectively. These three 
models are all based on the super league approach, i.e., for each of the 44 leagues featuring 



8200 Machine Learning (2024) 113:8165–8204

in the prediction set, the data of all seasons of the league were merged into one dataset and 
processed as if it was a single continuous season. The entire feature engineering and model 
development process was carried out separately for each super league dataset. All three 
models used the total feature set consisting of six features based on the combination of 
home and away matches. Unlike DeepFoot-KNN and DeepFoot-ANN, which are based on 
the optimal recency value derived with the Pearson method, DeepFoot-KNN2 is based on 
the k-NN approach for determining the optimal recency hyperparameter n.

In Task 2 of the Challenge (prediction of results), the three models that featured in the 
top 4 in the score prediction task did also reasonably well: DeepFoot-ANN, DeepFoot-
KNN, and DeepFoot-KNN2 were ranked 4th, 6th and 7th, respectively. Surprisingly, 
DeepFoot-KNN fared a little bit better than DeepFoot-KNN2 in this task. The naive Bayes 
classifier using the entire homeaway feature set performed worst in both tasks. The main 
reason is probably that naive Bayes does not take into account the ordinal relation of the 
classes.

We expected that ordinal forests would perform much better in the 2023 Soccer 
Prediction Challenge, for the following reason. Ordinal forests are ensembles of 
regression trees, which have shown superior performance in a range of applications with 
tabular training data, even when compared to deep learning (Grinsztajn et  al., 2022). 
One possible explanation for the relatively poor performance might be our chosen 
encoding of scores (cf. Fig. 1b). Another possible explanation is that we discarded those 
matches with extremely unlikely scores, that is, scores that occurred with a frequency of 
0.1% or less, such as 0–7. This filtering discarded 2365 (0.8%) matches with 53 unlikely 
scores from the training set; hence, the ordinal forest model was unable to predict 
extremely rare outcomes.

The super league approach to feature engineering developed in this study seems to 
contradict common soccer domain knowledge. Yet, it led to highly competitive results 
in both Challenge tasks. A central element of the super league approach revolves around 
the recency value n, which determines how many recent team performances should be 
taken into account to characterize a team prior to a match. Common soccer domain 
knowledge would suggest that perhaps the recent 5 to 15 matches should be considered. 
However, the results that we obtained paint a counter-intuitive picture. To illustrate this, 
consider Fig. 2.

Figure 2 illustrates the result from a leave-one-out cross-validation of the result pre-
diction model with the k-NN model for all n values from 9 to 100. The triangles indicate 
the optimal n-values. For example, for the FRA3 league, the optimal recency value was 
nFRA3 = 18 , whereas for GER1 it was nGER1 = 64 . It is rather astonishing that for GER1 
the recent 64 games of a team would yield the optimal depth to calculate the features. 
For GER1, this means that almost two complete seasons covering a period of nearly two 
years are covered.

Figure 2 also shows how the values for n vary across leagues. The average n-value 
for the 44 leagues from the prediction set is 40, which is different from the mean value 
of 50.98 in the nkNN,Result column of Table  8. First, the nkNN,Result values in the table 
are based on all 51 leagues found in the training set. Second, the data for 44 leagues 
shown in Fig. 2 are averaging at each n-value the RPSavg error. Given that the average 
league size of the 44 leagues of the prediction set is 17.68 teams, each team, on aver-
age, would play 33.36 matches per season. This means that, on average, the best n-value 
is found well beyond a season’s worth of matches played by each team. This result was 
unexpected.
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Another unexpected result from our study relates to the overall predictive 
performance based on the total and homeaway features depicted in Tables 13 and 14. 
Since the homeaway features explicitly capture the home advantage and include the 
six total features, one would have expected that this feature set leads to a superior 
performance, but this was not the case. We have no explanation for this observation. 
In our future work, we will further investigate this finding by using a wider range of 
machine learning models.

Another surprising finding of our study is the relative good performance of our 
simple null models and baseline models. These models outperformed a number of 
far more complex machine learning models and the bookmakers’ model in the score 
prediction task (Task1, Table 13) and also a small number of machine learning models in 
the result prediction task (Task 2, Table 14). This is quite surprising, given that the null 
and baseline models are relatively simplistic, compared to the machine learning models. 
We did not even give these models the chance to benefit from the recency processing 
of the data, which we used for the machine learning models. It is quite possible that 
their performances would have been even better if we had chosen the null and baseline 
models based on an optimal n-value. There might be a theoretical explanation for this 
unexpected observation. It is often tacitly assumed that there exists a trade-off between 
model complexity and predictive performance: the more complex a model is, the higher 
its expected predictive performance, and vice versa (Rudin, 2019). For a given task, 
however, there might be countless models whose performances do not differ by a lot, 
an observation for which Leo Breiman coined the term “Rashomon effect” (Breiman, 
2001). Among the set of models with a similar performance, there might be some that 
are surprisingly simple. There are numerous examples in other domains, for example, 
bioinformatics (Dudoit & Fridlyand, 2002; Berrar et  al., 2006), which illustrate that 
complex models are indeed not always better (Hand, 2006; Gosiewska et al., 2021).

The bookmakers’ model came out top in the result prediction task (Task 2). This was 
not unexpected, as bookmakers have access to comprehensive match data sets and are able 
to tap into the wisdom of very large crowds of people—some with profound understanding 
of soccer—who bet on the outcomes of matches through the betting platforms. Given the 
minimal information about matches that we used in our study, one could have expected 
that the margin between the bookmakers’ model and the machine learning models would 
be even much higher, but it wasn’t—and this is rather motivating for machine learning 
researchers!

Considering that the bookmakers’ model was the clear winner among all Challenge 
participants for the result prediction task, it is surprising that the bookmakers’ model did 
not fare too well in the score prediction task. It is difficult to say what the reasons for this 
observation might be. For the bookmakers’ score predictions, we only had the odds for 
the score with the lowest odd value, so we could not determine if the best score prediction 
models would have been profitable if their predictions had been to bet on the prediction set 
matches. As some of our score prediction models fared well against the bookmakers’ score 
model, one might ask the question: “Would one have made a profit by betting money on the 
scores predicted by our models for the 736 matches from the prediction set?” The answer 
is: “We do not know.” The reason is that prior to the Challenge deadline, we determined the 
bookmakers’ score predictions for each of the 736 matches by identifying only the single 
score for which the bookmakers offered the lowest odds, which corresponds to the highest 
implied probability. The odds of all other scores of each match offered by the bookmakers 
were not collected. After the 736 matches had been completed, the odds were no longer 
available, so we do not know what the odds for the 736 observed scores were. Therefore, 
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we could not test if the predictions of any of our top-performing score models could have 
been used in a profitable way in sport betting.

11  Conclusions

Soccer match outcome prediction offers a formidable challenge for machine learning. 
Despite the seeming unpredictability of match outcomes, our research has demonstrated 
that it is possible to use readily available match data and machine learning to build 
predictive models with remarkable performance. One of our main insights is that the key to 
successful predictions lies in how well domain knowledge can be formalized and included 
in the modeling process.

Because of the promising results with the super league approach to feature engineering 
and model development, we will further investigate this in our future work, using more 
data on a soccer match, including corners, fouls, shots, yellow and red cards, and so 
on. Another interesting idea for future work is the use of classifiers with monotonicity 
constraints (Duivesteijn & Feelders, 2008), which are a type of prior knowledge about the 
relation between the response variable and the predictive features.
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