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Abstract

This article is an introduction to some of the most fundamental performance measures for the evaluation
of binary classifiers. These measures are categorized into three broad families: measures based on a single
classification threshold, measures based on a probabilistic interpretation of error, and ranking measures.
Graphical methods, such as ROC curves, precision-recall curves, TPR-FPR plots, gain charts, and lift
charts, are also discussed. Using a simple example, we illustrate how to calculate the various performance
measures and show how they are related. The article also explains how to assess the statistical significance
of an obtained performance value, how to calculate approximate and exact parametric confidence intervals,
and how to derive percentile bootstrap confidence intervals for a performance measure.
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Key points

e This article provides an overview of the fundamental performance measures for bi-

nary classification.

e Graphical methods for evaluating classification performance, such as ROC and
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precision-recall curves, are presented as well.

e This article explains how to assess the statistical significance of a performance mea-

sure and how to calculate confidence intervals.

1. Introduction

Classification problems can be categorized into (1) binary, (2) multiclass, and (3) multilabel tasks. In
binary classification tasks, only two classes are considered, which are commonly referred to as the positive
and negative class; for example, healthy vs. diseased, underexpressed vs. overexpressed, smoker vs. non-
smoker, etc. By contrast, multiclass tasks include more than just two classes. Some of the measures for
binary classification tasks can be easily extended to multiclass problems [T} [3]. “Single-label” means that an
instance (or case) belongs to only one class, whereas “multi-label” means that an instance can simultaneously
belong to more than just one class. This article focuses on performance measures for single-label, binary
classification tasks, with the goal to give an easily accessible introduction to the most commonly used
quantitative measures and how they are related. Using a simplified example, we illustrate how to calculate
these measures and give some general recommendations regarding their use.

In this article, the term “predictive model” should be understood to refer to not only fully specified
models from machine learning; instead, the term also encompasses medical diagnostic tests, for example, a
blood sugar test for diabetes.

We will begin with some basic notations. Let a data set D contain n instances (or cases) x;, i = 1..n,
and let each instance be described by k attributes (or features or covariates). We assume that each instance
belongs to exactly one class y;, with y € {0, 1}, where 1 denotes the positive class and 0 denotes the negative
class. Some performance measures, such as the hinge loss (Definition 35), require that the negative class is
encoded as —1. A scoring classifier is a mapping C : X — R that produces a class membership score for each
instance, for example, a signed distance to a decision boundary or a conditional probability P(y = 1|X = x;).
This class membership score expresses the degree of class membership of that instance in the positive class.
Often, we will assume that the scores are scaled from 0 to 1 and that they can be interpreted as estimated
class posterior probabilities, C(x;) = p; = P(y = 1|X = x;).

As D contains only positive and negative examples, the scoring classifier can either be used as a ranker
or as a crisp classifier. A ranker uses the ordinal scores to order the instances from the most to the least
likely to be positive. The ranker can be turned into a crisp classifier by setting a classification threshold ¢
on the score: if p; > t, then the predicted class label is §§ = 1; otherwise, § = 0.

The underlying concept of performance metrics are scoring rules, which assess the quality of probabilistic
predictions [4, [5, 6]. Let a model be presented with an instance x;, which belongs to either the positive or
negative class, y = {0, 1}. Let the model’s probabilistic belief be the same as the true probability p € [0, 1]
that the class of x; is y = 1. The model outputs the belief report ¢ € [0,1]. A scoring rule R(y,q) € R



assigns a reward based on the reported ¢ and the real class y. A scoring rule is called proper if the model
maximizes the expected reward by truthfully reporting its belief p. A scoring rule is called strictly proper
if the reported belief is the only report that maximizes the expected reward. For example, consider the
quadratic scoring rule R(y,q) = 1 — (y — q)®. The (true) probability that the instance x; belongs to
class 1 is p, and the (true) probability that it belongs to class 0 is (1 — p). The expected reward is then
E(R)=[1-(1-¢)?p—[1-(0-¢)?)(1—p)=1—¢*+2pq— p. Setting the first derivative with respect to
q to zero gives %—}; =2p—2q =0 or g =p. As the second derivative, %—1; = —2, is negative, the reward is
indeed (uniquely) maximized if ¢ = p. Therefore, the model is incentivized to report the true probability p.
The quadratic scoring rule is a strictly proper scoring rule and underlies various performance measures, for

example, the Brier score (Definition 18).

As described by [3], the different performance measures can be categorized into three broad families:

1. Performance measures based on a single classification threshold;
(a) Elementary performance measures;
(b) Composite performance measures;
2. Performance measures based on a probabilistic interpretation of error;

3. Ranking measures.

We will illustrate the performance measures using a contrived example (Figure [1)). Here, ten cases are
described by two features, i.e., their z- and y-coordinates; five cases (#3, #6, #7, #9, and #10) belong to
the positive class (represented by circles), while the five remaining cases (#1, #2, #4, #5, and #8) belong
to the negative class (represented by squares). The classification task is to find a decision boundary, so that
cases falling on one side are classified as members of the positive class, while cases falling on the opposite
side are classified as members of the negative class.

In Figure[T] the decision boundary is represented by the solid vertical line. Note that this line is certainly
not the optimal decision boundary for this classification problem; nonetheless, it can be used to discern the
two classes: the more a case is located to the right of the boundary, the more likely it is a member of the
positive class, and vice versa. Case #6 lies exactly on the boundary, so it is reasonable to assign a class
membership score of 0.5, with the probabilistic interpretation that the case is equally likely to belong to the
positive or negative class. To quantify the degree of class membership of the other cases, we calculate the
distance between them and the boundary. For example, the distance between case #8 and the boundary is
0.25, which leads to a score of 0.5 4+ 0.25 = 0.75. Case #3 lies on the opposite side of the boundary but has
the same distance, so we use 0.5 — 0.25 = 0.25 as its membership score for the positive class. Analogously,
we can derive the scores for all ten cases and rank them as shown in Figure [2]

This contrived example is deliberately simplified, and real classification algorithms usually calculate the
class membership scores in a more sophisticated way. But the example illustrates the key idea: a model
separates positive and negative cases and quantifies their class membership by a score, which can be used

to rank the cases from most likely to be positive to the least likely to be positive. Although the scores on
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Figure 1: Simplified example. Ten instances of two classes (circles: positive class; squares: negative class) are classified based
on a decision boundary (solid black line). Instances to the right of the boundary are predicted as positives, while instances to

the left are predicted as negatives.

the horizontal axis in Figure [I] range from 0.10 to 0.95, they are strictly speaking not probabilities because
they are not bound to the interval [0, 1]. However, to illustrate some of the performance measures, it can be
convenient to interpret the scores in Figure [2| probabilistically.

Note that many performance measures are known under different names. The reason is that the same
measures were developed in different fields of science; for example, in epidemiology and medicine, the term
“positive predictive value” is widely used, whereas in machine learning and information retrieval, the term
“precision” is more common. Similarly, “sensitivity” is commonly used in the context of biomedical tests,
whereas “recall” is more common in information retrieval. Mathematically, there is of course no difference
between these synonyms.

A closely related concept to performance metric is the loss function, which is also known as cost function.
In short, a loss function measures by how much a model’s predictions diverge from the real target values. A
classification can entail a penalty, and the objective during training is to find a model whose expected loss
on the independent test set is as small as possible. The objective function is the function that we seek to
optimize; in the case of the loss function, we wish to minimize it. But minimizing the loss during the training
phase is usually not a wise strategy, as it generally leads to an overfitted model that performs well on the
training set but not so well on new, unseen data. The perhaps most intuitive loss function in supervised
learning is the 0-1 loss, which simply counts the number of misclassifications. Conceptually, the 0-1 loss
is equivalent to the error rate (cf. Definition 2). In applied machine learning, however, this loss is rarely

used because it is a non-convex function, and as a function that is not differentiable everywhere, it is more
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Figure 2: Ranking table for the introductory example (Figure , with performance measures resulting from 11 different
classification thresholds ¢1..t11. Each case above the threshold is classified as a positive. It is assumed that classification
thresholds always fall between actual scores. TPR, true positive rate = recall = sensitivity; FPR, false positive rate = 1—

specificity; Prec, precision = positive predictive value; Cum.class, cumulative class count.

difficult to minimize. The logloss (or cross-entropy) is therefore far more frequently used as the objective

function.

2. Performance measured based on a single classification threshold

Consider Figure [2| Here, all cases above threshold t5 (dotted line) are classified as positive cases, while
all cases below the line are classified as negative cases. Several elementary performance measures can now
be derived from such a single classification threshold. The classification results are often represented in a
2 x 2 table or confusion matriz, as shown in Figure , with the elementary concepts of true positives (TP,
a case is really a positive case and predicted as positive); false positive (F'P, a case is really a negative case
but predicted as a positive); false negative (F'N, a case is really a positive case but predicted as negative);
and true negative (T'N, a case is really a negative case and predicted as negative). The number of false
positives is also known as Type I error, and the number of false negatives is known as Type II error. The

corresponding counts for the introductory example are shown in Figure [3p.

2.1. Elementary performance measures

From the confusion matrix in Figure [3h, several elementary performance measures can be derived.
Definition 1. Accuracy

The accuracy is the proportion of correct classifications,

TP+ TN (1)
accuracy =
Y= TP+FP+FN+TN
For the introductory example (Figure, the accuracy is % = (.70 for the classification threshold ¢5.
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Figure 3: (a) Confusion matrix for a binary classification task. (b) Confusion matrix for Figure

Definition 2. Error rate
The error rate is the proportion of incorrect classifications,
FP+FN

te = 2
error rate TPLFP+ FN I TN (2)

For the introductory example (Figure , the error rate is = 1 — accuracy = 0.30 for the classification

threshold t5.

Definition 3. Sensitivity or recall or true positive rate
The sensitivity (or recall or true positive rate, TPR) is the number of correctly predicted

positive cases divided by the number of all positive cases,

TP

TP+ FN 3)

sensitivity =

For the introductory example (Figure , the sensitivity is % = 0.60. The sensitivity can also be stated
as a conditional probability, P(§ = 1|y = 1).
Definition 4. Specificity or true negative rate

The specificity (or true negative rate, TNR) is the number of correctly predicted negative



cases divided by the number of all negative cases,

TN

Sp eCiﬁCity = m

(4)
For the introductory example (Figure , the specificity is % = 0.80. The specificity can also be stated
as a conditional probability, P(§ = 0]y = 0).
Definition 5. Precision or positive predictive value
The precision (or positive predictive value) is the number of correctly predicted positive

cases divided by the number of all cases that are predicted as positive,

TP

TP+ FP (5)

precision =

For the introductory example (Figure , the precision is % = 0.75. The precision can also be stated as
a conditional probability, P(y = 1§ = 1).
Definition 6. Negative predictive value
The negative predictive value is the number of correctly predicted negative cases divided

by the number of all cases that are predicted as negative,

TN

ti dicti lue = —— 6
negative predictive value = zo—r (6)

For the introductory example (Figulre7 the negative predictive value is % = 0.67. The negative predictive
value can also be stated as a conditional probability, P(y = 0|g = 0).
Definition 7. False discovery rate
The false discovery rate (FDR) is the number of false positives divided by the number of

cases that are predicted as positive,

FP

FDR= —
R=%ps1P

(7)

For the introductory example (Figure , the false discovery rate is i = 0.25. The false discovery rate

can also be stated as a conditional probability, P(y = 0|g = 1).

2.2. Composite performance measures derived from elementary measures

From the elementary performance measures, several composite measures can be constructed, such as the

Youden index, which is defined as follows [7].



Definition 8. Youden index

The Youden index (or Youden’s J statistic) is defined as

J = sensitivity + specificity — 1 (8)

Often, the maximum Youden index is reported, i.e., Jymax = max;{sensitivity (¢) +specificity (¢) — 1}, where
t denotes the classification threshold for which J is maximal [§]. For the introductory example (Figure [2)),
the sum of sensitivity and specificity is maximized for tg, for which both sensitivity and specificity are 0.8
(see Figure ph), and Jyax = 0.6.
Definition 9. Positive likelihood ratio
The positive likelihood ratio (LR,) is defined as
sensitivity P(

Y
LR = =
* 7 1 — specificity  P(§

=3.0.

For the introductory example (Figure , the positive likelihood ratio is 1%15/5
Definition 10. Negative likelihood ratio

The negative likelihood ratio (LR_) is defined as

IR — 1-— seI'lsit'ivity _ P(gg =0ly=1) (10)
specificity P(g=0|y=0)
F . . . . . . . 1—3/5 _
or the introductory example (Figure , the negative likelihood ratio is a5 = 0.5.
Definition 11. Balanced accuracy
The balanced accuracy (BACC) is the average of sensitivity and specificity,
BACC — sensitivity + specificity (11)

2

For the introductory example (Figure , the balanced accuracy is (2 + 1) = 0.70.

Definition 12. F-measure
The F-measure (also known as Fj-score or simply F-score) is the harmonic mean of pre-
cision and recall,
1 recision x recall
2 x =

F-measure = 2 x =

1 1 . .
Srecision + —— precision + recall

(12)

The multiplication by the constant 2 scales the measure to 1 when both precision and recall are 1. For

the introductory example (Figure , the F-measure is 2 X ;;iig;g = 0.67.



Definition 13. Fg-measure

The Fjg-measure is the general form of the F-measure,

precision X recall

Fy = (1+ 62 x (13)

(B?precision + recall

where the positive real constant g allows for an unequal weighting of precision and recall.

Definition 14. G-measure

The G-measure is the geometric mean of precision and recall,

G-measure = \/precision x recall (14)

For the introductory example (Figure , the G-measure is \/3/4 x 3/5 = 0.671 for the classification
threshold t5.
Matthews correlation coefficient [9] is a discretization of the Pearson correlation coefficient [10].
Definition 15. Matthews correlation coefficient
Matthews correlation coefficient (MCC) is defined as
TP xTN —-FP x FN

MCC = (15)
V(TP + FN)(TP + FP)(TN + FP)(TN + FN)

with MCC € [-1,1], where —1 indicates perfect negative correlation (i.e., the model

predicts all negatives as positives, and vice versa), 0 indicates no correlation (i.e., the
model predicts randomly), and +1 indicates perfect positive correlation (i.e., the model

predicts all real positives as positives and all real negatives as negatives).

V(3+2)(3+1)(4+1) (4+2)
lead to the indeterminate form %, for example, if TP + FN = 0, which means that the classifier predicts

For the introductory example (Figure , MCC = Sx4_1x32 = 0.408. Note that Eq. |15( may

all cases as instances of the negative class. As the positive class is never predicted, this is most likely an
indication that something is wrong with the model. The MCC is suitable for imbalanced data sets [11];
however, this measure is not easily generalizable to more than two classes [IJ.
Definition 16. Lift
The lift measures how much better the predictions by the model, C, are compared to a
baseline or null model. The lift for the positive class is defined as
Ply =1]g. = 1)

where P(y = 1|j. = 1) denotes the probability that the case is really a positive, given that
the model predicted that it is positive, and P(gnun = 1) is the probability that the null

model predicts it as a positive.



Commonly, the null model is random guessing, so the probability of predicting a case as a positive is
estimated as the proportion of positive cases in the training set, i.e., the prior probability of positive cases
(which is also referred to as prevalence) [12]. Put simply, the lift tells us how much better our predictions are
when we use our real model, compared to using just random guessing. To illustrate the lift, let us consider
again the introductory example (Figure[3]). For the classification threshold ¢5, the model predicts 4 test cases
as positives, and 3 of these predictions are correct, hence, P(y = 1|g. = 1) = %. Let us assume that the class
ratio of positives and negatives is the same in the training set, i.e., half of the cases are positives and the
other half are negatives; hence, P(Jnu = 1) = % Therefore, the lift for the positive class is i’% =1.5. So
loosely speaking, we are doing 1.5 times better with the model than with random guessing. This can also
be expressed in terms of gain: using the model, we expect to predict 3 out of 4 positives correctly, whereas
with random guessing, we expect to predict only 2 correctly—hence, we “gain” 1 correct prediction. The

lift and gain are usually calculated for all possible classification thresholds and visualized in a lift chart and

gain chart, respectively. These charts are discussed in Section [4

3. Performance measures based on a probabilistic understanding of error

Suppose that a model C; produces the score P(y = 1|x_) = 0.9 for a real negative test case x_, whereas
another model Cy produces the score P(y = 1|x_) = 0.8. Both models misclassify x_ as a positive case, but
which model is making the more serious error? Here, it is useful to consider the deviation of the predicted
class posterior probability from the real class label, which is coded as 1 for the positive and 0 for the negative
class. Performance measures that take this deviation into account are based on a probabilistic understanding

of error.

Definition 17. Mean absolute error

The mean absolute error (MAE) is defined as

1 n
MAE = n Z lyi — pil (17)

i=1
where y; € {0,1} and p; = P(y; = 1|x;) = C(x;) is the predicted class membership score

and n is the number of test cases.

For the introductory example (Figure|2), the mean absolute error is calculated as MAE = (|1 —0.95| +
11— 0.80] + [0 — 0.75] + |1 — 0.6] -+ |1 — 0.5] + [0 — 0.45] -+ [0 — 0.3] + |1 — 0.25] + [0 — 0.2] + [0 — 0.1]) = 0.370.
Definition 18. Mean squared error or Brier score

The mean squared error (MSE) (or Brier score [13]) is defined as

n

MSE = %Z(yz — Pi)Q (18)

=1

where y; € {0,1} and p; = P(y; = 1|x;) = C(x;) is the predicted class membership score

10



and n is the number of test cases.

For the introductory example (Figure , MSE = £[(1-0.95)% + (1 —0.80)* + (0 — 0.75)% + (1 — 0.6)* +
(1 -0.5)%+ (0—0.45)% 4+ (0 — 0.3) + (1 — 0.25)> + (0 — 0.2)% + (0 — 0.1)?] = 0.192. Note that the mean
squared error cannot be extended to classification problems that involve more than two classes for which
an ordinal relationship exists, for example, “win”, “draw”, and “lose” in sports match outcome prediction.
Clearly, some classifications can be worse than others. For example, if the real match outcome is “win”, and
one classifier predicts “draw” while another classifier predicts “lose”, then the error of the former classifier
is less severe, as “win” is closer to “draw” than it is to “lose”. To account for more than two classes with an
ordinal relationship, the ranked probability score can be used [44].

Definition 19. Root mean square error

The root mean square error (RMSE) is defined as

RMSE = (19)

2 D=

where y; € {0,1} and p; = P(y; = 1|x;) = C(x;) is the predicted class membership score

and n is the number of test cases.

For the introductory example (Figure , RMSE = /0.192 = 0.438.
The logarithmic loss (logloss) or cross-entropy is an information-theoretic measure. Note that the
Kullback-Leibler divergence is the cross-entropy minus the entropy.
Definition 20. Logloss or cross-entropy
Let a model C' produce scores p; €]0, 1] for n instances x;, e.g., class posterior probabilities

C(x;) = P(y; = 1|x;) = p;- The logarithmic loss (logloss) or cross-entropy is defined as

1 n
logloss = —— > _ yi 1ogy(pi) + (1 — y:) loga(1 — i) (20)
=1

where y; € {0,1}, and p; # 1 and p; # 0.

The smaller the logloss, the better the predictions. If p; = 0 or p; = 1, then the logloss is not defined
because of log, 0; therefore, log, p; is then calculated as log, (max{p;, €}), where € is a small positive constant.

Ferri et al. suggest € = 1075 [3]. For the introductory example (Figure7 the logloss is calculated as follows.

11



1
logloss = _E[l x 10g5(0.95) + (1 — 1) x logy(1 — 0.95)

+ 1 x log,(0.8) + (1 — 1) x logy(1 — 0.8)

+ 0 x log,(0.75) + (1 — 0) x logy(1 — 0.75)
+ 1 x 1ogy(0.6) + (1 — 1) x logy(1 — 0.6)

+ 1 x logy(0.5) + (1 — 1) x logy(1 — 0.5)

+0 x log,(0.3) + (1 — 0) x logy(1 —0.3)
41 x log,(0.25) + (1 — 1) x logy(1 — 0.25)

(0.

(

(

(

+0 x logy(0.45) + (1 — 0) x logy(1 — 0.45)
(

(

+0 x logy(0.2) + (1 — 0) x logy(1 — 0.2)

+0 x logy(0.1) + (1 — 0) x logy(1 — 0.1)]

= 0.798.

One problem with the loss based on cross-entropy is that it does not take into account class imbalance. For
example, consider a classification problem where the minority class (positive class) consists of 10 cases and
the majority class (negative class) consists of 990 cases. The loss then mostly depends on the classification of
the majority cases, which are perhaps easier to classify than the minority cases. The balanced cross-entropy
addresses this problem by introducing a weighting factor « € [0, 1] for the positive class and 1 — « for the

990

negative class, which can be taken as the inverse class frequencies [55]. In this example, o = {555 and

l—a= 1000, alternatively, the weighting factor can be determined through cross-validation.
Definition 21. Balanced cross-entropy
Let a model C produce scores p; €]0, 1] for n instances x;, e.g., class posterior probabilities

C(x;) = P(y; = 1|x;) = p;- The balanced cross-entropy, bCE, is defined as

bCE = —% > i @ logy(pi) + (1= wi) (1 — ) logy(1 — p;) (21)
=1

where y; € {0,1}, and « € [0, 1].

While the balanced cross-entropy addresses the problem of class imbalance, it does not take into account
that some cases can be more easy to classify than others. Tsung-Yi et al. developed the focal loss in order
to downweight the loss caused by the easy-to-classify cases [55].

Definition 22. Focal loss and average focal loss

Let a model C produce scores p; €0, 1] for n instances x;, e.g., class posterior probabilities

12



C(x;) = P(y; = 1x;) = p;. Let

Di ify; =1
Pt =
1—p;i ify; =0

The focal loss for an individual case is defined as

FL(pt) = —(1 — pt)" logs(pr) (22)

The average focal loss, FLyyg, is defined as

Flavg = —% > yi (1= pe)7 loga(pi) + (1= ;) (1= py)” logs(1 = pi) (23)

i=1
where y; € {0,1}. Here, (1—p;)” is the modulating factor with tunable focusing parameter
v = 0.

For a case that is relatively easy to classify, the model produces a relatively large p;, i.e., close to 1. For
such cases, the modulating factor is close to 0; hence, their contribution to the overall loss is very small, and
therefore easy-to-classify cases are downweighted. For cases that are misclassified with relatively small py,
the loss is less affected. The downweigthing of easy-to-classify cases depends on the focusing parameter ~.
For v = 0, the focal loss is equivalent to the cross-entropy; as v increases, the downweighting effect increases
as well. The value of v = 2 was empirically found to work well in practice [55]. When the focal loss is used
as objective function in the training phase, the model focuses more on correcting misclassified cases.

Tsung-Yi et al. recommend an a-balanced variant of the focal loss. Let «; denote a for y; = 1, and let
ay denote (1 — «) for y; = 0 according to Eq. The a-balanced modulating factor is then ay(1 — p¢)?,
which was found to improve Eq. 23| slightly [55].

A further information-theoretic measure is the information score [14], which is defined as follows.

Definition 23. Information score and relative information score
Let the real class of instance x; be y;. Let the prior probability of that class be p(y;).
Let the predicted score for that class be p;. The information score (IS) for the case x; is

defined as

I(xi) = —log,(p(yi)) + logy(pi) o = i) o
log, (1 — p(yi)) — logy (1 —pi)  if p; < p(ys)

The relative information score (I,.) is the ratio of the average information score over all n

13



test cases x; and the entropy of the prior class distribution,

Ir — % Z?:l I(Xl> (25)

— 8 p(yi) loga (p(yr))

where n denotes the number of test cases, and K denotes the number of classes.

I(x;) is positive if p; > p(y;), negative if p; < p(y;), and zero if p; = p(y;). The information score takes
into account the class prior probabilities and thereby accounts for the fact that a high accuracy can be easily
achieved in tasks with a very likely majority class [I5]. For the introductory example, the information score

is calculated as follows.

I(x1) = —log, 0.5 + log, 0.95 = 0.926

I(x) = —log, 0.5 + log, 0.80 = 0.678

I(x3) =logy(1 — 0.5) —logy(1 — 0.25) = —0.585
I(x4) = — log, 0.5 + log, 0.60 = 0.263

I(x5) = —logy 0.5 + log, 0.50 = 0

I(x6) = —log, 0.5 4 log, 0.55 = 0.138

I(x7) = —log, 0.5 + log, 0.30 = 0.485

I(xs) =logy(1 —0.5) —logy(1 — 0.25) = —0.585
I(x9) = —log, 0.5+ log, 0.80 = 0.678

I(x10) = —log, 0.5 + log, 0.90 = 0.848

I - ﬁ(0.926 +0.678 — 0.585 + 0.263 + 0 + 0.138 + 0.485 — 0.585 4 0.678 + 0.848) — 0.9846.

—0.5log, 0.5 — 0.5log, 0.5

Cohen’s kappa measures the agreement between two raters on a categorical variable [I6]. Thus, if we
assume that the real class labels are due to some unknown generating process, we can use this measure
to compare how well the predictions of a model agree with that process (i.e., reality). This agreement is
of course already quantified in the accuracy (Eq. ; however, accuracy does not take into account that
an agreement could be coincidental. Cohen’s kappa adjusts the accuracy by calculating the probability of
random agreements.

Definition 24. Cohen’s kappa
Cohen’s kappa (k) is defined as

Py — P¢
Hiil—Pg (26)

where Py is the probability that the model’s predicted class labels agree with the real class

labels, and P¢ is the probability of random agreement.
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Py is estimated as the proportion of correctly predicted class labels, i.e., the accuracy. The probability
of random agreement is estimated as follows: the probability that the classifier predicts a case as a positive
is P{ = W. The probability that a case is really a positive is P = w. Hence, the probability
that both agree just by chance on the positive cases is the product P{ x P{. It is of course assumed that
the process which generates the real class labels is independent of the model. Analogously, we calculate
the probability of random agreement on the negative cases, and we obtain the probability of total random

agreement as

TP+ FP y TP+FN+FN+TN » FP+TN

pe 27
€ n n n n (27)
where n is the total number of test cases. For the introductory example (Figure , K= 3%01 X % +

244 _ 144 _
=5 X o = 0.50.

4. Ranking measures

Ranking performance refers to how well the model orders or ranks the positive cases relatively to the
negative cases based on the class membership score. There exist various graphical methods for representing
ranking performance. Figure shows the gain chart of the introductory example (Figure , which plots
the cumulative class on the y-axis and the ranking index of the corresponding instance on the x-axis. For
example, if we classify the 4 top-ranked instances as positives, then we classify 3 instances correctly, in
contrast to only 2 instances that we expect to predict correctly by random guessing; hence, the gain is 1

correct prediction.

(a) Gain chart (b) Lift chart
5 2.0
4 1.8 —
[/}
(%]
©
o 3 1.6 -
(0]
= =
E —1
g 27 1.4 -
=
o
1 1.2 -
0 - 1.0 »
1T T T T T T T T 1 1 T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Instance Instance

Figure 4: (a) Gain chart and (b) lift chart for the introductory example (Figure . The red line indicates the expected gain or

lift for a random guesser.
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In Figure 7 the red line indicates the expected number of correct positive predictions (for a given
number of predicted instances) by using random guessing. The average gain is a summary statistic of the
gain chart.

Definition 25. Average gain

Let the test cases be ranked based on decreasing values of their class membership scores
pi = P(y; = 1|x;) = C(x;). Let Ag; denote the difference between the gain of the trained
model C, g.(j), and the gain of the null model, gnun(j), when the j top-ranked instances

are classified as positives,

Ag; = ge(§) — gnun(4) (28)

The average gain is the average of all differences in gain,

I
Q—EZAQJ‘ (29)

=1

where n is the total number of test cases.

For example, assuming that the null model is randomly guessing, we calculate the average gain for the
introductory example as follows: § = $5[(1—0.5)+ (2—1)+ (2—1.5)+ (3 —-2) + (4 —25) + (4 —3) + (4 —
3.5)+ (5—4)+ (5—4.5) + (5 —5)] = 0.75. Geometrically, the average gain is the average distance between
the gain curve and the red line in Figure [fh.

Figure 4p shows the corresponding lift chart. Note that the expected lift for random guessing is 1.

Definition 26. Average lift
Let the test cases be ranked based on decreasing values of the class membership scores
pi = P(y; = 1|x;) = C(x;). Let lift(j) denote the lift when the j top-ranked cases are

classified as positive. The average lift is defined as

_ 1 &
T~ L e
ift - E lift(§) (30)
j=1
where n is the total number of test cases.

For the introductory example, we calculate the average lift as follows (see Figure : lift = %(2 + 2+
4/3+3/2+8/5+4/3+8/7+5/4+10/9 + 1) = 1.427.

The receiver operating characteristic (ROC) curve is one of the most widely used graphical tools to plot
the performance of a binary classifier [I7, 18, 19, 20, 2I]. The ROC curve depicts the trade-offs between
the false positive rate (or 1 minus specificity, shown on the z-axis) and the true positive rate (or sensitivity
or recall, shown on the y-axis). These trade-offs correspond to all possible binary classifications that result
from any dichotomization of the ranking scores. The points connecting the segments of the ROC curve are

called operating points, and they correspond to the possible classification thresholds.
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(c) Precision-recall plot

(a) ROC plot (b) TPR-FPR plot
— FPR
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Figure 5: Three different methods for the graphical representation of ranking performance. (a) ROC plot, showing the ROC

curve (solid line) and the ROC convex hull (with dotted lines spanning the concavities). The red line is the expected performance

of a random guesser. (b) TPR-FPR plot. (c) Precision-recall plot. The point marked by a white circle results from thresholding

the ranking scores at ts.

Figure [5h shows the ROC plot for the introductory example. The diagonal red line is the expected ROC

curve of a random guesser. The area under the diagonal is 0.5. Hence, any “good” model should produce a

ROC curve above the red line, with an area under the curve (AUC) larger than 0.5. The AUC is a commonly

used summary statistic of the ROC curve and can be interpreted as a conditional probability because it is

equivalent to a Wilcoxon rank-sum statistic [22] 23] [24]: given any randomly selected positive and negative

case, the AUC is the probability that the model assigns a higher score to the positive case (i.e., ranks it

before the negative case). Following Hilden’s notation [25], the AUC is defined as follows.

Definition 27. Area under the ROC curve

Let P(p+ > p—|x4+ and x_) denote the probability that a randomly selected actual positive
case, X, has a higher ranking score, p, than a randomly selected negative case, x_, i.e.,
p+ > p—. Here, a higher ranking score means that x is ranked before x_. Let ny > 0
be the number of positive instances and n_ > 0 be the number of negative instances, and
n = ny +n_. Let TPR(t;) and FPR(¢;) denote the true positive rate and false positive

rate for a threshold t;, respectively, where k = n + 1 is the number of possible thresholds.

The area under the ROC curve (AUC) is defined as

1
AUC = P(p, > p_|xs and x_) = / TPR(4) dFPR(t:)
0
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From an empirical ROC curve, the AUC can be calculated as

S_ —0.5n_(n_+1)
nyn_

AUC =

(32)

where S_ is the sum of the ranks of the negative instances.

For the introductory example, we obtain S_ =3+6+7+9+ 10 =35, n_ =5, np =5, and AUC =
W = 0.8, which corresponds to the shaded area in Figure @1 Note that the expected AUC of a
random model is 0.5, whereas the AUC of a perfect model is 1.

A closely related measure is the Gini index, which is defined as follows.

(a) ROC plot (b) ROC plot
1.0 - 1 1.0
0.8 | 0.8 -
0.6 - ©0.6 -
o o
o 0.4 - 0.4
e AUC m
0.2 0.2 1
0.0 7 T T T T T \ 0.0 5 T T T T T T
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
FPR FPR
(c) ROC plot (d) Precision-recall plot
1.0 L 1.0
08- < 0.8 |
©064 § 0.6
o ‘ @
= A 8
& 0.4 - S 0.4 -
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0.2 - 0.2 -
0.0 - 0.0 -
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Figure 6: Different graphical representations of ranking performance for the model from the introductory example (cf. Figure.
The point (0.2, 0.6) in ROC space and the point (0.6, 0.75) in precision-recall space result from thresholding the ranking scores
at ¢5. (a) ROC plot, with AUC = 0.8. The red line is the expected performance of a random guesser. (b) ROC plot, with Gini
index = gg = 0.6 =2 x AUC — 1. (¢) ROC plot, with AUCH = 0.88. (d) Precision-recall plot, with a trapezoidal estimator
for the area under the curve, AUCPR,,;, = 0.6476.

Definition 28. Gini index or Gini coefficient

The Gini index (or Gini coefficient) is defined as
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.. A
Gini = B (33)

where A is the area between the ROC curve and the diagonal line from (0,0) to (1,1), and
B is the area above that line, with B = 0.5.

The Gini index can be easily derived from the AUC. Consider Figure [6p. A is the purple area. As
AUC = A+0.5, we have A = AUC — 0.5. Then, since Gini = 0% = 2A, we obtain Gini = 2 x AUC — 1. For
the introductory example, we obtain Gini =2 x 0.8 — 1 = 0.6.

A further measure that can be derived from the ROC curve is the area under the ROC convex hull
(AUCH). The ROC convex hull is the hull that encloses the operating points of the ROC curve [26] 20]. The
line segment (0, 0) to (0,0.4), the dotted lines, and the segment (0.6,1.0) to (1.0,1.0) in Figure [5h represent
the convex hull for the introductory example; the corresponding AUCH is shown in Figure [6c. Note that in
machine learning, a curve is usually called “convex” if any straight line interpolating between two points on
the curve is never above the curve. This interpretation is different from the definition of a convex curve in
mathematics.

Definition 29. Area under the ROC convex hull

The area under the ROC convex hull (AUCH) is the area under the curve that results
from the interpolation between the following &k points in ROC space, which are ordered
based on increasing values of their abscissa: the origin (z;,y;) = (0,0), the minimum set
of points spanning the concavities, and the point (1,1). The AUCH can be calculated for

an empirical ROC curve by using the trapezoid rule,

k-1
AUCH = Z Yi(@ir1 — @) + 0.5(Yi1 — ¥i) (i1 — x3) (34)

i=1
For the introductory example, we obtain AUCH = 0.88.
In Figure [p, the true positive rate (TPR) and false positive rate (FPR) are plotted as a function of the
classification threshold in a TPR-FPR plot, from which the Kolmogorov-Smirnov statistic can be derived.

Definition 30. Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov statistic (KS) is the maximum value of the absolute difference

between two cumulative distributions. When we assess the ranking ability of a model,

these distributions are given by the true positive rates, TPR(¢;), and false positive rates,

FPR(%;), for all classification thresholds ¢;.
KS = max{|TPR(¢;) — FPR(%;)|} (35)
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The KS statistic has a simple geometrical interpretation as the maximum distance between the TPR and
FPR curves. In Figure b, the distance between the TPR and FPR curve is maximal for threshold ¢6, and
KS =0.8—0.6 = 0.2. The KS statistic was shown to be sensitive to various types and levels of noise [27], 28]
and is therefore not recommended for model evaluation and comparison. A closely related but more robust
measure is the truncated average Kolmogorov-Smirnov statistic (taKS) [27], which calculates the average

distance between the TPR- and FPR-curves.

Definition 31. Truncated average Kolmogorov-Smirnov statistic

Let TPR(¢;) and FPR(%;) denote the true positive and false positive rate for a classification
threshold ¢;, respectively, where Kk = n + 1 is the number of possible thresholds. The
truncated average Kolmogorouv-Smirnov statistic (taKS) is the average distance between

the TPR- and FPR-curves, excluding the start- and endpoints (0,0) and (1, 1),
=
KS = —— S [TPR(4;) — FPR(Y;
takS = — Z_;[ R(t;) — FPR(t:)] (36)

For the introductory example, we obtain taKS = & x [(0.2 — 0) + (0.4 — 0) + (0.4 — 0.2) + (0.6 — 0.2) +
(0.8—0.2) +(0.8—0.4)+ (0.8—10.6) + (1 —0.6) + (1 — 0.8)] = 0.33.

In precision-recall plots (Figure ), the precision is plotted as a function of the recall (or true positive
rate or sensitivity). A frequently used summary measure of a precision-recall plot is the average precision,
which corresponds to the area under the precision-recall curve (AUCPR).

Definition 32. Average precision or area under the precision-recall curve

Let ny be the number of positive instances and n_ be the number of negative instances,
with ny > 0and n_ > 0 and ny +n_ = n. Let hy(¢;) denote the hits, i.e., the number of
positive instances at or above the threshold t;, i = 1..k, where k = n + 1 is the number of
possible classification thresholds. Accordingly, let h_(t;) denote the number of negative
instances at or above the threshold. The recall at threshold ¢; is 7(¢;) = TPR(¢;) = h;i(j‘)
The precision is p(t;) = hz%(tl’) for 4 > 1 and 0 for ¢ = 1. The average precision (AP) is

the area under the precision-recall curve,

1
0
From an empirical precision-recall curve, AP can be calculated by using the trapezoidal

rule,

k
AP = Zp(ti)mi = p(t:)[r(t:) — r(ti-1)] (38)

with T(to) = 0.

20



For the introductory example, we calculate the average precision as follows (see Figure : AP =1 x
1/5+1x(2/5—-1/5)4+2/3x(2/5—-2/5)+3/4x (3/5—2/5)+4/5x (4/5—3/5) +4/6 x (4/5 —4/5) +
4/7 x (4/5—4/5)+5/8 x (5/5—4/5)+5/9 % (5/5—5/5)+5/5 % (5/5—5/5) = 0.835.

The term “average precision” could be misunderstood as the average over the precisions resulting from
all possible thresholds; in the introductory example, this average is -5 x (1+1+2/3+3/4+4/54+4/6 +
4/7+5/845/9+5/10) = 0.714. Note that the expected AP of a random model is “*, whereas the AP of
a perfect model is 1.

From an empirical precision-recall plot, it is not obvious how the area should be calculated because the
precision normally does not change monotonically with increasing recall (cf. Figure [5k) [29, B30]. From a
plot like the one shown in Figure 5k, we can construct different curves by interpolating through different
points, and consequently, we obtain (slightly) different areas under the curve, which can be calculated by
using trapezoidal estimators.

Definition 33. Trapezoidal estimators of the area under the empirical precision-
recall curve

Let pmin(t;) and pmax(t;) denote the minimum and maximum precision, respectively, for
a recall at threshold t¢;, i = 1..k, where kK = n + 1 is the number of possible thresh-
olds. The area under the empirical precision-recall curve (AUCPR) can be estimated by

AUCPRminmax, AUCPRax (upper trapezoid), or AUCPR i, (lower trapezoid), where

k—1
AUCPR i = Z Panin (i) +2p min (1) [r(tig1) — r(ts))] (39)

(ti) =+ Pmax (ti—i-l )

k—1
AUCPRminmax = Z Prmin 2

=1

[r(tira) = r(t:)] (40)

k—1
AUCPR o = Y, Lol sl 1) — ) (41)

i=1

The mean average precision (MAP) is the extension of AP to more than two classes [31]. MAP is simply
the arithmetic mean of the average precisions, which we obtain by considering each class in turn as the
positive class. MAP is a widely used performance measure in information retrieval [31].

The triplet loss was developed for image recognition [54]. The rationale for the triplet loss is that a given
positive image z¢ (called anchor) should be closer to all other positive images 2’ than to any other negative
image z!'. For example, z¢ may be a picture of a person’s face, 2% is another picture of the same person’s

face, and z' is the picture of another person’s face. This means that

1) = FEDIE +a < [I£ () = )3

for all possible triplets f(z¢), f(a?), and f(z}) from the data set, and where « is a margin between
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positive and negative pairs.
Definition 34. Triplet loss
Let f(z) € R represent an embedding of an image x into a d-dimensional Euclidean space,

with the Euclidean norm || f(z)||2 = 1. The triplet loss is defined as

N
Lo =Y max{0, (|f(f) — F@D)I5 — |I£(zF) — f(=])II3 + )} (42)
i=1
where N is the number of images, and ||x||3 denotes the squared Euclidean norm.

The hinge loss is used for training maximal margin classifiers, i.e., algorithms that try to find a decision
boundary or hyperplane, subject to some constraints, that maximizes the margin between the cases of the

positive and negative class. An example of such a classifier is the support vector machine [56].

Definition 35. Hinge loss

Let a data set contain n cases x; that belong to either the positive class, y = +1, or
the negative class, y = —1. Let a model C' produce scores s; € R for the cases, which
are interpretable as signed distances from a decision boundary that separates the positive

from the negative class. The hinge loss for the i*" case is defined as

Eh = maX{O, 1-— Y; X Sl'} (43)

The average hinge loss is defined as
i 1 En {0, 1 —y; x 8;} (44)
h—n_lmax , Yi X 8;

Note that the negative class must be encoded as —1, not as 0, like in the previous examples. Figure
shows the hinge loss and the 0-1 loss for y = +1.

If the predicted score, s;, and the true class, y;, have the same sign, then the corresponding case lies on
the correct side of the boundary. If in addition the absolute value of s; is larger than or equal to 1, then the
hinge loss is 0. The case is considered sufficiently far from the boundary and therefore entails no penalty. If
the score and the true class have opposite signs, then the case lies on the wrong side of the boundary. The
hinge loss is now a linear function of the score. Also, all cases that are on the correct side of the boundary
but not sufficiently far from the boundary, that is, |s;| < 1, contribute linearly to the hinge loss.

Figure shows the same data as Figure [1| except that the numbers on the horizontal axis are signed
distances from the decision boundary. These signed distances are the scores, s;. Figure[Sp shows the ranking
of the cases based on decreasing scores, together with their hinge losses. Note that cases #8 and #3 are

misclassified, as they lie on the wrong side of the boundary. As they have the same distance from the
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Figure 7: Hinge loss (red) and 0-1 loss (blue) for y = +1.
boundary, they lead to the same hinge loss of £, = 2.
€) Decision boundary (b)
classify as negative classify as positive Case Class| Score | Hinge loss
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9 +1 1.20 0.0
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Figure 8: (a) The same ten cases from two classes as shown in Figure [I} except that the numbers on the horizontal axis reflect

signed distances from the decision boundary. (b) Hinge loss of the ten cases.

5. Evaluating an observed value of a performance measure

Once we have the value of our performance measure, how should we interpret it? For example, assume
that we obtain a sensitivity of 0.80—how do we know whether this is a good result or not? The performance
may of course be evaluated based on domain expert knowledge. If such knowledge is not available, however,
then we could consider the statistical significance of the observed performance, keeping of course in mind
the caveats and pitfalls of the p-value and that confidence intervals are always more meaningful than p-
values [32] [45]. The statistical literature contains various approaches for calculating a confidence interval
for a proportion. Here, we will present only two of them: a simple asymptotic confidence interval based

on the normal approximation and the exact Clopper-Pearson confidence interval. We will assume that the
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prediction for an instance x; is independent from the prediction for another instance x;, ¢ # j. Also, we
will assume that the test instances were randomly sampled from the target population. In practice, both

assumptions may be violated, of course.

5.1. Significance testing with random permutation tests

Random permutation tests are non-parametric Monte Carlo procedures that make fewer distributional
assumptions than parametric significance tests. Such tests can be used to assess the statistical significance
of an observed result. There exist various random permutation tests; for an overview, see [33, [34]. In our

context, the basic procedure of a random permutation test is as follows:

1. Train the classifier on the training set and apply it to the test set. Calculate the value v of the statistic
of interest, i.e., the value of the performance measure.

2. Randomly permute the class labels of the training set. Thereby, any association between the data set
attributes and the class labels is destroyed.

3. Retrain the classifier on the permuted training set and apply it to the test set. Calculate the statistic
again (i.e., the value w; of the performance measure of interest).

4. Repeat steps (2) and (3) many times (e.g., k¥ = 10000 times) to generate the empirical distribution
of the statistic under the null hypothesis of no association between the class labels and the data set

attributes.

The p-value is defined as the probability of observing results as extreme as (or more extreme than) the
observed results, given that the null hypothesis is true and given the stopping intentions [35, 45]. The p-value
quantifies the compatibility between the null hypothesis and the observed result: the smaller the p-value,
the less compatible is the null hypothesis with the observed result. We can calculate a permutation-based
p-value for our observed performance v by counting how many values w; are at least as extreme as v. For
example, assume that v = 0.80 is the observed sensitivity. Let us further assume that we performed 10000
random permutations and that among these, 300 values w; are at least 0.80. Then the one-sided, empirical

300

p-value is 15555 = 0.03. Thus, under the null hypothesis that there is no association between the attributes

and the class labels, the probability of observing a sensitivity of at least 0.80 is estimated as 0.03.

5.2. Approzimate confidence interval for a proportion

Let p denote the (unknown) proportion in a population. For a sufficiently large sample, the sample
proportion, p, is approximately normally distributed with a mean of p. The standard deviation of the

sampling distribution of the sample proportion (i.e., the standard error of the sample proportion) is o5 =

@, which is estimated as s; = w. The Wald interval is an approximate (1 —«)100% confidence

interval for a population proportion [36].
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Definition 36. Wald confidence interval

Let p denote a proportion estimated from a sample of size n. If np > 5 and n(1l — p) >
5, then an approximate asymptotic (1 — «)100% confidence interval for the population
proportion p is given by the Wald interval,

p(1—p)

Pt 21_q/2 X
n

(45)

where z;_,/2 is the quantile of the standard normal distribution for probability 1 — a/2.

For example, a 95% Wald interval for the sensitivity in the introductory example is calculated as follows.

With TP = 3 and F'P = 2, we obtain p = % (= sensitivity). The interval is then

H(1—p 0.6 x 0.4
Pt 2102 X W/an) = 0.6+ 1.96 x ,/% = 0.6 4 0.4294 = [0.1706, 1.0294]. (46)

We see that the upper bound exceeds 1, which, obviously, is the maximum sensitivity; hence, the con-
fidence interval includes values that are impossible. The approximation is not good because the conditions
np=>5x0.6>5and n(l—p) =5x(1—0.6) >5 do not hold; therefore, an exact confidence interval should

be calculated.

5.3. Ezact confidence interval for a proportion

An exact confidence interval based on the F-distribution is given by the Clopper-Pearson interval [37].
Definition 37. Exact Clopper-Pearson confidence interval
Let p = = denote a proportion estimated from a sample of size n. An exact (1 — «)100%

Clopper-Pearson confidence interval for the population proportion p is given by

r (r+ 1) Fi_a/22(r+1),2(n—r)
T+ (’I’L -7+ 1)F17Q/2;2(7l77‘+1),27" (n - T) + (T + 1)F17a/2;2(r+1),2(n77')
where Fy_q /241, 4f, is the quantile function of the F-distribution with df; and df; degrees

(47)

of freedom.

For instance, a 95% confidence interval for the sensitivity in the introductory example is calculated as

follows.

3 (3+ 1) F1_0.05/2:2(3+1),2(5-3)
3+ (5 -3+ 1)F1—0-05/2;2(5—3+1),2x3, (5—3)+ B+ 1)F10.05/2:2(3+1).2(5-3)

= [0.1466, 0.9473].

5.4. Bootstrap percentile confidence interval

To derive a confidence interval analytically, it is necessary to calculate the standard error of the sample
statistic, which is not trivial for the more intricate performance measures. When conventional parametric

confidence intervals are difficult to calculate or when their assumptions (for example, an approximate normal
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distribution) are violated, deriving a bootstrap confidence interval is an interesting alternative. The bootstrap
is a data resampling method for assessing the accuracy of statistical estimates [38], B9 [42] [43]. There exist
different types of bootstrap confidence intervals [40l [41]. One of the simplest ones is the percentile bootstrap

[38]. The basic procedure for deriving a bootstrap percentile confidence interval is as follows [42]:

1. From the available learning set, L, which contains a total of n instances, generate a bootstrap set, B,
by randomly and uniformly sampling n instances with replacement.

2. Repeat step (1) b times to generate B; bootstrap sets, i = 1..b.

3. Build model C using the set B; as training set, and apply C to the corresponding out-of-bag set T;,
which contains the elements from L that are not in B;.

4. Calculate the value of the performance measure 0, from T;.

5. Repeat steps (3) and (4) for all b bootstrap sets and calculate all 0;, i = 1..b.

Definition 38. Bootstrap percentile confidence interval

Let L denote a learning set from a population. Let € denote the unknown value of a
performance measure for a predictive model C for that population. Let B; denote the ‘"
bootstrap set (i.e., i*" training set) that was sampled uniformly with replacement from L,
and let the number of instances in B; and L be the same. Let T} denote the it" out-of-bag
test set, with T; = L \ B;. The model C is trained on B; and then applied to T;. Let éi
denote the resulting value of the performance measure. A (1 —a)100% bootstrap percentile

confidence interval (Clyoot) for 6 is given by

Clyoot = [éa/Q, él—a/2] (48)

where éa /2 and 91_a /2 are the a/2 and 1 — /2 percentiles, respectively, of the empirical

distribution of .

In R, bootstrap confidence intervals can be generated with the function boot.ci of the package boot

46, 47).

6. Discussion

Which performance measure should be used in practice? This question does not have a definitive answer,
as the different measures quantify different aspects of the performance. If a predictive model is developed
for a concrete application, then it is often clear which performance measure matters most. On the other
hand, if the general usefulness of a new classifier is to be assessed, then the choice of the most appropriate
measure is often not obvious. In that case, reporting several measures can be meaningful.

When the classes are highly imbalanced, accuracy and error rate are not really meaningful. For example,

assume that the class ratio is 9:1 in both the training and test set. A model that always predicts the majority
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class (i.e., a majority voter) is expected to achieve an accuracy of 90%, although it has not learned anything
from the data beyond the class priors. For data sets with highly imbalanced classes, the average precision
(Definition 32) is a recommended ranking measure. The average precision is also easily extended to more
than two classes as mean average precision. Also, the balanced cross-entropy (Definition 21) and the focal
loss (Definition 22) are good performance measures when the classes are imbalanced.

Performance measures that are based on a probabilistic interpretation of error are, in general, preferable
to measures that rely on a single classification threshold. For example, let us assume that model A made the
predictions shown in Table [2] and let us assume that model B made the same predictions, except that case
#8 was misclassified with a score of 0.79. This is clearly a worse prediction than that of model A, which
produced the score 0.75 for case #8. However, for ¢5, the threshold-based measures would not discriminate
between A and B, in contrast to the measures that are based on a probabilistic interpretation of error.

Graphical tools such as ROC curves, lift charts, TPR-FPR plots, and precision-recall curves generally
paint a clearer picture of the predictive performance than summary statistics. Clearly, it is often desirable
to use a single value, for example, in order to tabulate the results of various models so that they can be
ranked from best to worst, which is commonly done in data mining competitions. However, we have to keep
in mind that we lose important information when we condense a two-dimensional plot into a single scalar.
Thus, whenever possible, performance plots are preferable to scalars.

Ranking measures that are derived from such plots are popular evaluation measures; particularly, the
AUC is widely used in machine learning. In contrast to accuracy, for example, the AUC is relatively robust
to class imbalances and other types of noise [27] [28]. Therefore, the AUC is not a bad choice as a performance
measure, although several shortcomings have been pointed out[25] 48|, 49, [50]. For example, consider a drug
discovery study that aims at ranking thousands of chemical compounds based on their toxicological effect.
Here, it is typically possible to follow up on only a small number of top-ranked compounds, which should
be predicted very accurately. By contrast, it may be irrelevant how well the lower-ranked compounds were
predicted. This is also known as the early retrieval problem: although we are interested in only the top-
ranked instances, the AUC also reflects the quality of the predictions of the remaining instances, which may
not be interesting.

There exists an equivalence between ROC curves and precision-recall curves, in the sense that they contain
the same points for the same predictive model [30]. However, for data sets with highly imbalanced classes,
precision-recall curves are more informative than ROC curves because precision-recall curves emphasize the
performance with respect to the top-ranked cases [51]. In other words, if the correctness of the few top-
ranked instances matters most (like in the mentioned drug discovery study), then precision-recall curves are
preferable to ROC curves. This might explain why the average precision is more commonly used than the
AUC in information retrieval [52].

Importantly, the performance measure in the training phase should be the same as the measure in the

validation and test phase, since a model that was optimized to achieve, say, a high AUC on the training set
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is not necessarily expected to achieve, say, a low logloss on the test set. There are further important aspects

that need to be considered when we evaluate a predictive model or learning algorithm, such as the choice of

benchmark data sets, data resampling strategies, statistical tools to compare different models or algorithms,

etc. These aspects are beyond the scope of this article; for a more in-depth discussion, see for example [53].
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