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Abstract

This article is an introduction to some of the most fundamental performance measures for the evaluation

of binary classifiers. These measures are categorized into three broad families: measures based on a single

classification threshold, measures based on a probabilistic interpretation of error, and ranking measures.

Graphical methods, such as ROC curves, precision-recall curves, TPR-FPR plots, gain charts, and lift

charts, are also discussed. Using a simple example, we illustrate how to calculate the various performance

measures and show how they are related. The article also explains how to assess the statistical significance

of an obtained performance value, how to calculate approximate and exact parametric confidence intervals,

and how to derive percentile bootstrap confidence intervals for a performance measure.
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Key points

• This article provides an overview of the fundamental performance measures for bi-

nary classification.

• Graphical methods for evaluating classification performance, such as ROC and
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precision-recall curves, are presented as well.

• This article explains how to assess the statistical significance of a performance mea-

sure and how to calculate confidence intervals.

1. Introduction

Classification problems can be categorized into (1) binary, (2) multiclass, and (3) multilabel tasks. In

binary classification tasks, only two classes are considered, which are commonly referred to as the positive

and negative class; for example, healthy vs. diseased, underexpressed vs. overexpressed, smoker vs. non-

smoker, etc. By contrast, multiclass tasks include more than just two classes. Some of the measures for

binary classification tasks can be easily extended to multiclass problems [1, 3]. “Single-label” means that an

instance (or case) belongs to only one class, whereas “multi-label” means that an instance can simultaneously

belong to more than just one class. This article focuses on performance measures for single-label, binary

classification tasks, with the goal to give an easily accessible introduction to the most commonly used

quantitative measures and how they are related. Using a simplified example, we illustrate how to calculate

these measures and give some general recommendations regarding their use.

In this article, the term “predictive model” should be understood to refer to not only fully specified

models from machine learning; instead, the term also encompasses medical diagnostic tests, for example, a

blood sugar test for diabetes.

We will begin with some basic notations. Let a data set D contain n instances (or cases) xi, i = 1..n,

and let each instance be described by k attributes (or features or covariates). We assume that each instance

belongs to exactly one class yi, with y ∈ {0, 1}, where 1 denotes the positive class and 0 denotes the negative

class. Some performance measures, such as the hinge loss (Definition 35), require that the negative class is

encoded as −1. A scoring classifier is a mapping C : X → R that produces a class membership score for each

instance, for example, a signed distance to a decision boundary or a conditional probability P (y = 1|X = xi).

This class membership score expresses the degree of class membership of that instance in the positive class.

Often, we will assume that the scores are scaled from 0 to 1 and that they can be interpreted as estimated

class posterior probabilities, C(xi) = pi = P (y = 1|X = xi).

As D contains only positive and negative examples, the scoring classifier can either be used as a ranker

or as a crisp classifier. A ranker uses the ordinal scores to order the instances from the most to the least

likely to be positive. The ranker can be turned into a crisp classifier by setting a classification threshold t

on the score: if pi > t, then the predicted class label is ŷ = 1; otherwise, ŷ = 0.

The underlying concept of performance metrics are scoring rules, which assess the quality of probabilistic

predictions [4, 5, 6]. Let a model be presented with an instance xi, which belongs to either the positive or

negative class, y = {0, 1}. Let the model’s probabilistic belief be the same as the true probability p ∈ [0, 1]

that the class of xi is y = 1. The model outputs the belief report q ∈ [0, 1]. A scoring rule R(y, q) ∈ R
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assigns a reward based on the reported q and the real class y. A scoring rule is called proper if the model

maximizes the expected reward by truthfully reporting its belief p. A scoring rule is called strictly proper

if the reported belief is the only report that maximizes the expected reward. For example, consider the

quadratic scoring rule R(y, q) = 1 − (y − q)2. The (true) probability that the instance xi belongs to

class 1 is p, and the (true) probability that it belongs to class 0 is (1 − p). The expected reward is then

E(R) = [1− (1− q)2]p− [1− (0− q)2](1− p) = 1− q2 + 2pq − p. Setting the first derivative with respect to

q to zero gives ∂R
∂q = 2p − 2q = 0 or q = p. As the second derivative, ∂R

∂q = −2, is negative, the reward is

indeed (uniquely) maximized if q = p. Therefore, the model is incentivized to report the true probability p.

The quadratic scoring rule is a strictly proper scoring rule and underlies various performance measures, for

example, the Brier score (Definition 18).

As described by [3], the different performance measures can be categorized into three broad families:

1. Performance measures based on a single classification threshold;

(a) Elementary performance measures;

(b) Composite performance measures;

2. Performance measures based on a probabilistic interpretation of error;

3. Ranking measures.

We will illustrate the performance measures using a contrived example (Figure 1). Here, ten cases are

described by two features, i.e., their x- and y-coordinates; five cases (#3, #6, #7, #9, and #10) belong to

the positive class (represented by circles), while the five remaining cases (#1, #2, #4, #5, and #8) belong

to the negative class (represented by squares). The classification task is to find a decision boundary, so that

cases falling on one side are classified as members of the positive class, while cases falling on the opposite

side are classified as members of the negative class.

In Figure 1, the decision boundary is represented by the solid vertical line. Note that this line is certainly

not the optimal decision boundary for this classification problem; nonetheless, it can be used to discern the

two classes: the more a case is located to the right of the boundary, the more likely it is a member of the

positive class, and vice versa. Case #6 lies exactly on the boundary, so it is reasonable to assign a class

membership score of 0.5, with the probabilistic interpretation that the case is equally likely to belong to the

positive or negative class. To quantify the degree of class membership of the other cases, we calculate the

distance between them and the boundary. For example, the distance between case #8 and the boundary is

0.25, which leads to a score of 0.5 + 0.25 = 0.75. Case #3 lies on the opposite side of the boundary but has

the same distance, so we use 0.5 − 0.25 = 0.25 as its membership score for the positive class. Analogously,

we can derive the scores for all ten cases and rank them as shown in Figure 2.

This contrived example is deliberately simplified, and real classification algorithms usually calculate the

class membership scores in a more sophisticated way. But the example illustrates the key idea: a model

separates positive and negative cases and quantifies their class membership by a score, which can be used

to rank the cases from most likely to be positive to the least likely to be positive. Although the scores on
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Figure 1: Simplified example. Ten instances of two classes (circles: positive class; squares: negative class) are classified based

on a decision boundary (solid black line). Instances to the right of the boundary are predicted as positives, while instances to

the left are predicted as negatives.

the horizontal axis in Figure 1 range from 0.10 to 0.95, they are strictly speaking not probabilities because

they are not bound to the interval [0, 1]. However, to illustrate some of the performance measures, it can be

convenient to interpret the scores in Figure 2 probabilistically.

Note that many performance measures are known under different names. The reason is that the same

measures were developed in different fields of science; for example, in epidemiology and medicine, the term

“positive predictive value” is widely used, whereas in machine learning and information retrieval, the term

“precision” is more common. Similarly, “sensitivity” is commonly used in the context of biomedical tests,

whereas “recall” is more common in information retrieval. Mathematically, there is of course no difference

between these synonyms.

A closely related concept to performance metric is the loss function, which is also known as cost function.

In short, a loss function measures by how much a model’s predictions diverge from the real target values. A

classification can entail a penalty, and the objective during training is to find a model whose expected loss

on the independent test set is as small as possible. The objective function is the function that we seek to

optimize; in the case of the loss function, we wish to minimize it. But minimizing the loss during the training

phase is usually not a wise strategy, as it generally leads to an overfitted model that performs well on the

training set but not so well on new, unseen data. The perhaps most intuitive loss function in supervised

learning is the 0-1 loss, which simply counts the number of misclassifications. Conceptually, the 0-1 loss

is equivalent to the error rate (cf. Definition 2). In applied machine learning, however, this loss is rarely

used because it is a non-convex function, and as a function that is not differentiable everywhere, it is more
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Class Score TPR FPR Prec

1 0.95 1/5 0 1

1 0.8 2/5 0 1

0 0.75 2/5 1/5 2/3

1 0.6 3/5 1/5 3/4

1 0.5 4/5 1/5 4/5

0 0.45 4/5 2/5 4/6

0 0.3 4/5 3/5 4/7

1 0.25 5/5 3/5 5/8

0 0.2 5/5 4/5 5/9

0 0.1 5/5 5/5 5/10

t5

t1
t2
t3
t4

t11

Case

10

9

8

7

6

5

4

3

2

1

Cum.class Lift

1

2

2

3

4

4

4

5

5

5

2

2

4/3

3/2

8/5

4/3

8/7

5/4

10/9

10/10

Figure 2: Ranking table for the introductory example (Figure 1), with performance measures resulting from 11 different

classification thresholds t1..t11. Each case above the threshold is classified as a positive. It is assumed that classification

thresholds always fall between actual scores. TPR, true positive rate = recall = sensitivity; FPR, false positive rate = 1−

specificity; Prec, precision = positive predictive value; Cum.class, cumulative class count.

difficult to minimize. The logloss (or cross-entropy) is therefore far more frequently used as the objective

function.

2. Performance measured based on a single classification threshold

Consider Figure 2. Here, all cases above threshold t5 (dotted line) are classified as positive cases, while

all cases below the line are classified as negative cases. Several elementary performance measures can now

be derived from such a single classification threshold. The classification results are often represented in a

2× 2 table or confusion matrix, as shown in Figure 3a, with the elementary concepts of true positives (TP ,

a case is really a positive case and predicted as positive); false positive (FP , a case is really a negative case

but predicted as a positive); false negative (FN , a case is really a positive case but predicted as negative);

and true negative (TN , a case is really a negative case and predicted as negative). The number of false

positives is also known as Type I error, and the number of false negatives is known as Type II error. The

corresponding counts for the introductory example are shown in Figure 3b.

2.1. Elementary performance measures

From the confusion matrix in Figure 3a, several elementary performance measures can be derived.

Definition 1. Accuracy

The accuracy is the proportion of correct classifications,

accuracy =
TP + TN

TP + FP + FN + TN
(1)

For the introductory example (Figure 2), the accuracy is 3+4
3+1+2+4 = 0.70 for the classification threshold t5.
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Figure 3: (a) Confusion matrix for a binary classification task. (b) Confusion matrix for Figure 2.

Definition 2. Error rate

The error rate is the proportion of incorrect classifications,

error rate =
FP + FN

TP + FP + FN + TN
(2)

For the introductory example (Figure 2), the error rate is = 1 − accuracy = 0.30 for the classification

threshold t5.

Definition 3. Sensitivity or recall or true positive rate

The sensitivity (or recall or true positive rate, TPR) is the number of correctly predicted

positive cases divided by the number of all positive cases,

sensitivity =
TP

TP + FN
(3)

For the introductory example (Figure 2), the sensitivity is 3
5 = 0.60. The sensitivity can also be stated

as a conditional probability, P (ŷ = 1|y = 1).

Definition 4. Specificity or true negative rate

The specificity (or true negative rate, TNR) is the number of correctly predicted negative
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cases divided by the number of all negative cases,

specificity =
TN

FP + TN
(4)

For the introductory example (Figure 2), the specificity is 4
5 = 0.80. The specificity can also be stated

as a conditional probability, P (ŷ = 0|y = 0).

Definition 5. Precision or positive predictive value

The precision (or positive predictive value) is the number of correctly predicted positive

cases divided by the number of all cases that are predicted as positive,

precision =
TP

TP + FP
(5)

For the introductory example (Figure 2), the precision is 3
4 = 0.75. The precision can also be stated as

a conditional probability, P (y = 1|ŷ = 1).

Definition 6. Negative predictive value

The negative predictive value is the number of correctly predicted negative cases divided

by the number of all cases that are predicted as negative,

negative predictive value =
TN

TN + FN
(6)

For the introductory example (Figure 2), the negative predictive value is 4
6 = 0.67. The negative predictive

value can also be stated as a conditional probability, P (y = 0|ŷ = 0).

Definition 7. False discovery rate

The false discovery rate (FDR) is the number of false positives divided by the number of

cases that are predicted as positive,

FDR =
FP

FP + TP
(7)

For the introductory example (Figure 2), the false discovery rate is 1
4 = 0.25. The false discovery rate

can also be stated as a conditional probability, P (y = 0|ŷ = 1).

2.2. Composite performance measures derived from elementary measures

From the elementary performance measures, several composite measures can be constructed, such as the

Youden index, which is defined as follows [7].
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Definition 8. Youden index

The Youden index (or Youden’s J statistic) is defined as

J = sensitivity + specificity − 1 (8)

Often, the maximum Youden index is reported, i.e., Jmax = maxt{sensitivity(t)+specificity(t)−1}, where

t denotes the classification threshold for which J is maximal [8]. For the introductory example (Figure 2),

the sum of sensitivity and specificity is maximized for t6, for which both sensitivity and specificity are 0.8

(see Figure 5a), and Jmax = 0.6.

Definition 9. Positive likelihood ratio

The positive likelihood ratio (LR+) is defined as

LR+ =
sensitivity

1− specificity
=
P (ŷ = 1|y = 1)

P (ŷ = 1|y = 0)
(9)

For the introductory example (Figure 2), the positive likelihood ratio is 3/5
1−4/5 = 3.0.

Definition 10. Negative likelihood ratio

The negative likelihood ratio (LR−) is defined as

LR− =
1− sensitivity

specificity
=
P (ŷ = 0|y = 1)

P (ŷ = 0|y = 0)
(10)

For the introductory example (Figure 2), the negative likelihood ratio is 1−3/5
4/5 = 0.5.

Definition 11. Balanced accuracy

The balanced accuracy (BACC) is the average of sensitivity and specificity,

BACC =
sensitivity + specificity

2
(11)

For the introductory example (Figure 2), the balanced accuracy is 1
2 ( 3

5 + 4
5 ) = 0.70.

Definition 12. F -measure

The F-measure (also known as F1-score or simply F -score) is the harmonic mean of pre-

cision and recall,

F -measure = 2× 1
1

precision + 1
recall

= 2× precision× recall

precision + recall
(12)

The multiplication by the constant 2 scales the measure to 1 when both precision and recall are 1. For

the introductory example (Figure 2), the F -measure is 2× 3/4×3/5
3/4+3/5 = 0.67.
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Definition 13. Fβ-measure

The Fβ-measure is the general form of the F -measure,

Fβ = (1 + β2)× precision× recall

β2precision + recall
(13)

where the positive real constant β allows for an unequal weighting of precision and recall.

Definition 14. G-measure

The G-measure is the geometric mean of precision and recall,

G-measure =
√

precision× recall (14)

For the introductory example (Figure 2), the G-measure is
√

3/4× 3/5 = 0.671 for the classification

threshold t5.

Matthews correlation coefficient [9] is a discretization of the Pearson correlation coefficient [10].

Definition 15. Matthews correlation coefficient

Matthews correlation coefficient (MCC) is defined as

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(15)

with MCC ∈ [−1, 1], where −1 indicates perfect negative correlation (i.e., the model

predicts all negatives as positives, and vice versa), 0 indicates no correlation (i.e., the

model predicts randomly), and +1 indicates perfect positive correlation (i.e., the model

predicts all real positives as positives and all real negatives as negatives).

For the introductory example (Figure 2), MCC = 3×4−1×2√
(3+2)(3+1)(4+1)(4+2)

= 0.408. Note that Eq. 15 may

lead to the indeterminate form 0
0 , for example, if TP + FN = 0, which means that the classifier predicts

all cases as instances of the negative class. As the positive class is never predicted, this is most likely an

indication that something is wrong with the model. The MCC is suitable for imbalanced data sets [11];

however, this measure is not easily generalizable to more than two classes [1].

Definition 16. Lift

The lift measures how much better the predictions by the model, C, are compared to a

baseline or null model. The lift for the positive class is defined as

lift(y = 1) =
P (y = 1|ŷc = 1)

P (ŷnull = 1)
(16)

where P (y = 1|ŷc = 1) denotes the probability that the case is really a positive, given that

the model predicted that it is positive, and P (ŷnull = 1) is the probability that the null

model predicts it as a positive.
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Commonly, the null model is random guessing, so the probability of predicting a case as a positive is

estimated as the proportion of positive cases in the training set, i.e., the prior probability of positive cases

(which is also referred to as prevalence) [12]. Put simply, the lift tells us how much better our predictions are

when we use our real model, compared to using just random guessing. To illustrate the lift, let us consider

again the introductory example (Figure 3). For the classification threshold t5, the model predicts 4 test cases

as positives, and 3 of these predictions are correct, hence, P (y = 1|ŷc = 1) = 3
4 . Let us assume that the class

ratio of positives and negatives is the same in the training set, i.e., half of the cases are positives and the

other half are negatives; hence, P (ŷnull = 1) = 1
2 . Therefore, the lift for the positive class is 3/4

1/2 = 1.5. So

loosely speaking, we are doing 1.5 times better with the model than with random guessing. This can also

be expressed in terms of gain: using the model, we expect to predict 3 out of 4 positives correctly, whereas

with random guessing, we expect to predict only 2 correctly—hence, we “gain” 1 correct prediction. The

lift and gain are usually calculated for all possible classification thresholds and visualized in a lift chart and

gain chart, respectively. These charts are discussed in Section 4.

3. Performance measures based on a probabilistic understanding of error

Suppose that a model C1 produces the score P (y = 1|x−) = 0.9 for a real negative test case x−, whereas

another model C2 produces the score P (y = 1|x−) = 0.8. Both models misclassify x− as a positive case, but

which model is making the more serious error? Here, it is useful to consider the deviation of the predicted

class posterior probability from the real class label, which is coded as 1 for the positive and 0 for the negative

class. Performance measures that take this deviation into account are based on a probabilistic understanding

of error.

Definition 17. Mean absolute error

The mean absolute error (MAE) is defined as

MAE =
1

n

n∑
i=1

|yi − pi| (17)

where yi ∈ {0, 1} and pi = P (yi = 1|xi) = C(xi) is the predicted class membership score

and n is the number of test cases.

For the introductory example (Figure 2), the mean absolute error is calculated as MAE = 1
10 (|1−0.95|+

|1− 0.80|+ |0− 0.75|+ |1− 0.6|+ |1− 0.5|+ |0− 0.45|+ |0− 0.3|+ |1− 0.25|+ |0− 0.2|+ |0− 0.1|) = 0.370.

Definition 18. Mean squared error or Brier score

The mean squared error (MSE) (or Brier score [13]) is defined as

MSE =
1

n

n∑
i=1

(yi − pi)2 (18)

where yi ∈ {0, 1} and pi = P (yi = 1|xi) = C(xi) is the predicted class membership score
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and n is the number of test cases.

For the introductory example (Figure 2), MSE = 1
10 [(1− 0.95)2 + (1− 0.80)2 + (0− 0.75)2 + (1− 0.6)2 +

(1 − 0.5)2 + (0 − 0.45)2 + (0 − 0.3)2 + (1 − 0.25)2 + (0 − 0.2)2 + (0 − 0.1)2] = 0.192. Note that the mean

squared error cannot be extended to classification problems that involve more than two classes for which

an ordinal relationship exists, for example, “win”, “draw”, and “lose” in sports match outcome prediction.

Clearly, some classifications can be worse than others. For example, if the real match outcome is “win”, and

one classifier predicts “draw” while another classifier predicts “lose”, then the error of the former classifier

is less severe, as “win” is closer to “draw” than it is to “lose”. To account for more than two classes with an

ordinal relationship, the ranked probability score can be used [44].

Definition 19. Root mean square error

The root mean square error (RMSE) is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − pi)2 (19)

where yi ∈ {0, 1} and pi = P (yi = 1|xi) = C(xi) is the predicted class membership score

and n is the number of test cases.

For the introductory example (Figure 2), RMSE =
√

0.192 = 0.438.

The logarithmic loss (logloss) or cross-entropy is an information-theoretic measure. Note that the

Kullback-Leibler divergence is the cross-entropy minus the entropy.

Definition 20. Logloss or cross-entropy

Let a model C produce scores pi ∈]0, 1[ for n instances xi, e.g., class posterior probabilities

C(xi) = P (yi = 1|xi) = pi. The logarithmic loss (logloss) or cross-entropy is defined as

logloss = − 1

n

n∑
i=1

yi log2(pi) + (1− yi) log2(1− pi) (20)

where yi ∈ {0, 1}, and pi 6= 1 and pi 6= 0.

The smaller the logloss, the better the predictions. If pi = 0 or pi = 1, then the logloss is not defined

because of log2 0; therefore, log2 pi is then calculated as log2(max{pi, ε}), where ε is a small positive constant.

Ferri et al. suggest ε = 10−5 [3]. For the introductory example (Figure 2), the logloss is calculated as follows.
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logloss = − 1

10
[1× log2(0.95) + (1− 1)× log2(1− 0.95)

+ 1× log2(0.8) + (1− 1)× log2(1− 0.8)

+ 0× log2(0.75) + (1− 0)× log2(1− 0.75)

+ 1× log2(0.6) + (1− 1)× log2(1− 0.6)

+ 1× log2(0.5) + (1− 1)× log2(1− 0.5)

+ 0× log2(0.45) + (1− 0)× log2(1− 0.45)

+ 0× log2(0.3) + (1− 0)× log2(1− 0.3)

+ 1× log2(0.25) + (1− 1)× log2(1− 0.25)

+ 0× log2(0.2) + (1− 0)× log2(1− 0.2)

+ 0× log2(0.1) + (1− 0)× log2(1− 0.1)]

= 0.798.

One problem with the loss based on cross-entropy is that it does not take into account class imbalance. For

example, consider a classification problem where the minority class (positive class) consists of 10 cases and

the majority class (negative class) consists of 990 cases. The loss then mostly depends on the classification of

the majority cases, which are perhaps easier to classify than the minority cases. The balanced cross-entropy

addresses this problem by introducing a weighting factor α ∈ [0, 1] for the positive class and 1 − α for the

negative class, which can be taken as the inverse class frequencies [55]. In this example, α = 990
1000 and

1− α = 10
1000 ; alternatively, the weighting factor can be determined through cross-validation.

Definition 21. Balanced cross-entropy

Let a model C produce scores pi ∈]0, 1[ for n instances xi, e.g., class posterior probabilities

C(xi) = P (yi = 1|xi) = pi. The balanced cross-entropy, bCE, is defined as

bCE = − 1

n

n∑
i=1

yi α log2(pi) + (1− yi) (1− α) log2(1− pi) (21)

where yi ∈ {0, 1}, and α ∈ [0, 1].

While the balanced cross-entropy addresses the problem of class imbalance, it does not take into account

that some cases can be more easy to classify than others. Tsung-Yi et al. developed the focal loss in order

to downweight the loss caused by the easy-to-classify cases [55].

Definition 22. Focal loss and average focal loss

Let a model C produce scores pi ∈]0, 1[ for n instances xi, e.g., class posterior probabilities
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C(xi) = P (yi = 1|xi) = pi. Let

pt =

pi if yi = 1

1− pi if yi = 0

The focal loss for an individual case is defined as

FL(pt) = −(1− pt)γ log2(pt) (22)

The average focal loss, FLavg, is defined as

FLavg = − 1

n

n∑
i=1

yi (1− pt)γ log2(pi) + (1− yi) (1− pt)γ log2(1− pi) (23)

where yi ∈ {0, 1}. Here, (1−pt)γ is the modulating factor with tunable focusing parameter

γ ≥ 0.

For a case that is relatively easy to classify, the model produces a relatively large pt, i.e., close to 1. For

such cases, the modulating factor is close to 0; hence, their contribution to the overall loss is very small, and

therefore easy-to-classify cases are downweighted. For cases that are misclassified with relatively small pt,

the loss is less affected. The downweigthing of easy-to-classify cases depends on the focusing parameter γ.

For γ = 0, the focal loss is equivalent to the cross-entropy; as γ increases, the downweighting effect increases

as well. The value of γ = 2 was empirically found to work well in practice [55]. When the focal loss is used

as objective function in the training phase, the model focuses more on correcting misclassified cases.

Tsung-Yi et al. recommend an α-balanced variant of the focal loss. Let αt denote α for yi = 1, and let

αt denote (1 − α) for yi = 0 according to Eq. 21. The α-balanced modulating factor is then αt(1 − pt)γ ,

which was found to improve Eq. 23 slightly [55].

A further information-theoretic measure is the information score [14], which is defined as follows.

Definition 23. Information score and relative information score

Let the real class of instance xi be yi. Let the prior probability of that class be p(yi).

Let the predicted score for that class be pi. The information score (IS) for the case xi is

defined as

I(xi) =

− log2(p(yi)) + log2(pi) if pi ≥ p(yi)

log2(1− p(yi))− log2(1− pi) if pi < p(yi)

(24)

The relative information score (Ir) is the ratio of the average information score over all n
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test cases xi and the entropy of the prior class distribution,

Ir =
1
n

∑n
i=1 I(xi)

−
∑K
k=1 p(yk) log2(p(yk))

(25)

where n denotes the number of test cases, and K denotes the number of classes.

I(xi) is positive if pi > p(yi), negative if pi < p(yi), and zero if pi = p(yi). The information score takes

into account the class prior probabilities and thereby accounts for the fact that a high accuracy can be easily

achieved in tasks with a very likely majority class [15]. For the introductory example, the information score

is calculated as follows.

I(x1) = − log2 0.5 + log2 0.95 = 0.926

I(x2) = − log2 0.5 + log2 0.80 = 0.678

I(x3) = log2(1− 0.5)− log2(1− 0.25) = −0.585

I(x4) = − log2 0.5 + log2 0.60 = 0.263

I(x5) = − log2 0.5 + log2 0.50 = 0

I(x6) = − log2 0.5 + log2 0.55 = 0.138

I(x7) = − log2 0.5 + log2 0.30 = 0.485

I(x8) = log2(1− 0.5)− log2(1− 0.25) = −0.585

I(x9) = − log2 0.5 + log2 0.80 = 0.678

I(x10) = − log2 0.5 + log2 0.90 = 0.848

Ir =
1
10 (0.926 + 0.678− 0.585 + 0.263 + 0 + 0.138 + 0.485− 0.585 + 0.678 + 0.848)

−0.5 log2 0.5− 0.5 log2 0.5
= 0.2846.

Cohen’s kappa measures the agreement between two raters on a categorical variable [16]. Thus, if we

assume that the real class labels are due to some unknown generating process, we can use this measure

to compare how well the predictions of a model agree with that process (i.e., reality). This agreement is

of course already quantified in the accuracy (Eq. 1); however, accuracy does not take into account that

an agreement could be coincidental. Cohen’s kappa adjusts the accuracy by calculating the probability of

random agreements.

Definition 24. Cohen’s kappa

Cohen’s kappa (κ) is defined as

κ =
P0 − P ce
1− P ce

(26)

where P0 is the probability that the model’s predicted class labels agree with the real class

labels, and P ce is the probability of random agreement.
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P0 is estimated as the proportion of correctly predicted class labels, i.e., the accuracy. The probability

of random agreement is estimated as follows: the probability that the classifier predicts a case as a positive

is P c+ = TP+FP
n . The probability that a case is really a positive is P r+ = TP+FN

n . Hence, the probability

that both agree just by chance on the positive cases is the product P c+ × P r+. It is of course assumed that

the process which generates the real class labels is independent of the model. Analogously, we calculate

the probability of random agreement on the negative cases, and we obtain the probability of total random

agreement as

P ce =
TP + FP

n
× TP + FN

n
+
FN + TN

n
× FP + TN

n
(27)

where n is the total number of test cases. For the introductory example (Figure 2), κ = 3+1
10 ×

3+2
10 +

2+4
10 ×

1+4
10 = 0.50.

4. Ranking measures

Ranking performance refers to how well the model orders or ranks the positive cases relatively to the

negative cases based on the class membership score. There exist various graphical methods for representing

ranking performance. Figure 4a shows the gain chart of the introductory example (Figure 2), which plots

the cumulative class on the y-axis and the ranking index of the corresponding instance on the x-axis. For

example, if we classify the 4 top-ranked instances as positives, then we classify 3 instances correctly, in

contrast to only 2 instances that we expect to predict correctly by random guessing; hence, the gain is 1

correct prediction.
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Figure 4: (a) Gain chart and (b) lift chart for the introductory example (Figure 2). The red line indicates the expected gain or

lift for a random guesser.
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In Figure 4a, the red line indicates the expected number of correct positive predictions (for a given

number of predicted instances) by using random guessing. The average gain is a summary statistic of the

gain chart.

Definition 25. Average gain

Let the test cases be ranked based on decreasing values of their class membership scores

pi = P (yi = 1|xi) = C(xi). Let ∆gj denote the difference between the gain of the trained

model C, gc(j), and the gain of the null model, gnull(j), when the j top-ranked instances

are classified as positives,

∆gj = gc(j)− gnull(j) (28)

The average gain is the average of all differences in gain,

ḡ =
1

n

n∑
j=1

∆gj (29)

where n is the total number of test cases.

For example, assuming that the null model is randomly guessing, we calculate the average gain for the

introductory example as follows: ḡ = 1
10 [(1− 0.5) + (2− 1) + (2− 1.5) + (3− 2) + (4− 2.5) + (4− 3) + (4−

3.5) + (5− 4) + (5− 4.5) + (5− 5)] = 0.75. Geometrically, the average gain is the average distance between

the gain curve and the red line in Figure 4a.

Figure 4b shows the corresponding lift chart. Note that the expected lift for random guessing is 1.

Definition 26. Average lift

Let the test cases be ranked based on decreasing values of the class membership scores

pi = P (yi = 1|xi) = C(xi). Let lift(j) denote the lift when the j top-ranked cases are

classified as positive. The average lift is defined as

lift =
1

n

n∑
j=1

lift(j) (30)

where n is the total number of test cases.

For the introductory example, we calculate the average lift as follows (see Figure 2): lift = 1
10 (2 + 2 +

4/3 + 3/2 + 8/5 + 4/3 + 8/7 + 5/4 + 10/9 + 1) = 1.427.

The receiver operating characteristic (ROC) curve is one of the most widely used graphical tools to plot

the performance of a binary classifier [17, 18, 19, 20, 21]. The ROC curve depicts the trade-offs between

the false positive rate (or 1 minus specificity, shown on the x-axis) and the true positive rate (or sensitivity

or recall, shown on the y-axis). These trade-offs correspond to all possible binary classifications that result

from any dichotomization of the ranking scores. The points connecting the segments of the ROC curve are

called operating points, and they correspond to the possible classification thresholds.
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Figure 5: Three different methods for the graphical representation of ranking performance. (a) ROC plot, showing the ROC

curve (solid line) and the ROC convex hull (with dotted lines spanning the concavities). The red line is the expected performance

of a random guesser. (b) TPR-FPR plot. (c) Precision-recall plot. The point marked by a white circle results from thresholding

the ranking scores at t5.

Figure 5a shows the ROC plot for the introductory example. The diagonal red line is the expected ROC

curve of a random guesser. The area under the diagonal is 0.5. Hence, any “good” model should produce a

ROC curve above the red line, with an area under the curve (AUC) larger than 0.5. The AUC is a commonly

used summary statistic of the ROC curve and can be interpreted as a conditional probability because it is

equivalent to a Wilcoxon rank-sum statistic [22, 23, 24]: given any randomly selected positive and negative

case, the AUC is the probability that the model assigns a higher score to the positive case (i.e., ranks it

before the negative case). Following Hilden’s notation [25], the AUC is defined as follows.

Definition 27. Area under the ROC curve

Let P (p+ > p−|x+ and x−) denote the probability that a randomly selected actual positive

case, x+, has a higher ranking score, p+, than a randomly selected negative case, x−, i.e.,

p+ > p−. Here, a higher ranking score means that x+ is ranked before x−. Let n+ > 0

be the number of positive instances and n− > 0 be the number of negative instances, and

n = n+ + n−. Let TPR(ti) and FPR(ti) denote the true positive rate and false positive

rate for a threshold ti, respectively, where k = n+ 1 is the number of possible thresholds.

The area under the ROC curve (AUC) is defined as

AUC = P (p+ > p−|x+ and x−) =

∫ 1

0

TPR(ti) dFPR(ti) (31)
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From an empirical ROC curve, the AUC can be calculated as

AUC =
S− − 0.5n−(n− + 1)

n+n−
(32)

where S− is the sum of the ranks of the negative instances.

For the introductory example, we obtain S− = 3 + 6 + 7 + 9 + 10 = 35, n− = 5, n+ = 5, and AUC =

35−0.5×5×6
5×5 = 0.8, which corresponds to the shaded area in Figure 6a. Note that the expected AUC of a

random model is 0.5, whereas the AUC of a perfect model is 1.

A closely related measure is the Gini index, which is defined as follows.
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Figure 6: Different graphical representations of ranking performance for the model from the introductory example (cf. Figure 2).

The point (0.2, 0.6) in ROC space and the point (0.6, 0.75) in precision-recall space result from thresholding the ranking scores

at t5. (a) ROC plot, with AUC = 0.8. The red line is the expected performance of a random guesser. (b) ROC plot, with Gini

index = 0.3
0.5

= 0.6 = 2 × AUC − 1. (c) ROC plot, with AUCH = 0.88. (d) Precision-recall plot, with a trapezoidal estimator

for the area under the curve, AUCPRmin = 0.6476.

Definition 28. Gini index or Gini coefficient

The Gini index (or Gini coefficient) is defined as
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Gini =
A

B
(33)

where A is the area between the ROC curve and the diagonal line from (0,0) to (1,1), and

B is the area above that line, with B = 0.5.

The Gini index can be easily derived from the AUC. Consider Figure 6b. A is the purple area. As

AUC = A+ 0.5, we have A = AUC− 0.5. Then, since Gini = A
0.5 = 2A, we obtain Gini = 2×AUC− 1. For

the introductory example, we obtain Gini = 2× 0.8− 1 = 0.6.

A further measure that can be derived from the ROC curve is the area under the ROC convex hull

(AUCH). The ROC convex hull is the hull that encloses the operating points of the ROC curve [26, 20]. The

line segment (0, 0) to (0, 0.4), the dotted lines, and the segment (0.6, 1.0) to (1.0, 1.0) in Figure 5a represent

the convex hull for the introductory example; the corresponding AUCH is shown in Figure 6c. Note that in

machine learning, a curve is usually called “convex” if any straight line interpolating between two points on

the curve is never above the curve. This interpretation is different from the definition of a convex curve in

mathematics.

Definition 29. Area under the ROC convex hull

The area under the ROC convex hull (AUCH) is the area under the curve that results

from the interpolation between the following k points in ROC space, which are ordered

based on increasing values of their abscissa: the origin (xi, yi) = (0, 0), the minimum set

of points spanning the concavities, and the point (1,1). The AUCH can be calculated for

an empirical ROC curve by using the trapezoid rule,

AUCH =

k−1∑
i=1

yi(xi+1 − xi) + 0.5(yi+1 − yi)(xi+1 − xi) (34)

For the introductory example, we obtain AUCH = 0.88.

In Figure 5b, the true positive rate (TPR) and false positive rate (FPR) are plotted as a function of the

classification threshold in a TPR-FPR plot, from which the Kolmogorov-Smirnov statistic can be derived.

Definition 30. Kolmogorov-Smirnov statistic

The Kolmogorov-Smirnov statistic (KS) is the maximum value of the absolute difference

between two cumulative distributions. When we assess the ranking ability of a model,

these distributions are given by the true positive rates, TPR(ti), and false positive rates,

FPR(ti), for all classification thresholds ti.

KS = max{|TPR(ti)− FPR(ti)|} (35)
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The KS statistic has a simple geometrical interpretation as the maximum distance between the TPR and

FPR curves. In Figure 5b, the distance between the TPR and FPR curve is maximal for threshold t6, and

KS = 0.8− 0.6 = 0.2. The KS statistic was shown to be sensitive to various types and levels of noise [27, 28]

and is therefore not recommended for model evaluation and comparison. A closely related but more robust

measure is the truncated average Kolmogorov-Smirnov statistic (taKS) [27], which calculates the average

distance between the TPR- and FPR-curves.

Definition 31. Truncated average Kolmogorov-Smirnov statistic

Let TPR(ti) and FPR(ti) denote the true positive and false positive rate for a classification

threshold ti, respectively, where k = n + 1 is the number of possible thresholds. The

truncated average Kolmogorov-Smirnov statistic (taKS) is the average distance between

the TPR- and FPR-curves, excluding the start- and endpoints (0, 0) and (1, 1),

taKS =
1

k − 2

k−1∑
i=2

[TPR(ti)− FPR(ti)] (36)

For the introductory example, we obtain taKS = 1
9 × [(0.2− 0) + (0.4− 0) + (0.4− 0.2) + (0.6− 0.2) +

(0.8− 0.2) + (0.8− 0.4) + (0.8− 0.6) + (1− 0.6) + (1− 0.8)] = 0.33.

In precision-recall plots (Figure 5c), the precision is plotted as a function of the recall (or true positive

rate or sensitivity). A frequently used summary measure of a precision-recall plot is the average precision,

which corresponds to the area under the precision-recall curve (AUCPR).

Definition 32. Average precision or area under the precision-recall curve

Let n+ be the number of positive instances and n− be the number of negative instances,

with n+ > 0 and n− > 0 and n+ +n− = n. Let h+(ti) denote the hits, i.e., the number of

positive instances at or above the threshold ti, i = 1..k, where k = n+ 1 is the number of

possible classification thresholds. Accordingly, let h−(ti) denote the number of negative

instances at or above the threshold. The recall at threshold ti is r(ti) = TPR(ti) = h+(ti)
n+

.

The precision is p(ti) = h+(ti)
i−1 for i > 1 and 0 for i = 1. The average precision (AP) is

the area under the precision-recall curve,

AP =

∫ 1

0

p(ti) dr(ti) (37)

From an empirical precision-recall curve, AP can be calculated by using the trapezoidal

rule,

AP =

k∑
i=1

p(ti)∆ri =

k∑
i=1

p(ti)[r(ti)− r(ti−1)] (38)

with r(t0) = 0.

20



For the introductory example, we calculate the average precision as follows (see Figure 2): AP = 1 ×

1/5 + 1 × (2/5 − 1/5) + 2/3 × (2/5 − 2/5) + 3/4 × (3/5 − 2/5) + 4/5 × (4/5 − 3/5) + 4/6 × (4/5 − 4/5) +

4/7× (4/5− 4/5) + 5/8× (5/5− 4/5) + 5/9× (5/5− 5/5) + 5/5× (5/5− 5/5) = 0.835.

The term “average precision” could be misunderstood as the average over the precisions resulting from

all possible thresholds; in the introductory example, this average is 1
10 × (1 + 1 + 2/3 + 3/4 + 4/5 + 4/6 +

4/7 + 5/8 + 5/9 + 5/10) = 0.714. Note that the expected AP of a random model is n+

n , whereas the AP of

a perfect model is 1.

From an empirical precision-recall plot, it is not obvious how the area should be calculated because the

precision normally does not change monotonically with increasing recall (cf. Figure 5c) [29, 30]. From a

plot like the one shown in Figure 5c, we can construct different curves by interpolating through different

points, and consequently, we obtain (slightly) different areas under the curve, which can be calculated by

using trapezoidal estimators.

Definition 33. Trapezoidal estimators of the area under the empirical precision-

recall curve

Let pmin(ti) and pmax(ti) denote the minimum and maximum precision, respectively, for

a recall at threshold ti, i = 1..k, where k = n + 1 is the number of possible thresh-

olds. The area under the empirical precision-recall curve (AUCPR) can be estimated by

AUCPRminmax, AUCPRmax (upper trapezoid), or AUCPRmin (lower trapezoid), where

AUCPRmin =

k−1∑
i=1

pmin(ti) + pmin(ti+1)

2
[r(ti+1)− r(ti)] (39)

AUCPRminmax =

k−1∑
i=1

pmin(ti) + pmax(ti+1)

2
[r(ti+1)− r(ti)] (40)

AUCPRmax =

k−1∑
i=1

pmax(ti) + pmax(ti+1)

2
[r(ti+1)− r(ti)] (41)

The mean average precision (MAP) is the extension of AP to more than two classes [31]. MAP is simply

the arithmetic mean of the average precisions, which we obtain by considering each class in turn as the

positive class. MAP is a widely used performance measure in information retrieval [31].

The triplet loss was developed for image recognition [54]. The rationale for the triplet loss is that a given

positive image xai (called anchor) should be closer to all other positive images xpi than to any other negative

image xni . For example, xai may be a picture of a person’s face, xpi is another picture of the same person’s

face, and xni is the picture of another person’s face. This means that

‖f(xai )− f(xpi )‖
2
2 + α < ‖f(xai )− f(xni )‖22

for all possible triplets f(xai ), f(xpi ), and f(xni ) from the data set, and where α is a margin between
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positive and negative pairs.

Definition 34. Triplet loss

Let f(x) ∈ Rd represent an embedding of an image x into a d-dimensional Euclidean space,

with the Euclidean norm ‖f(x)‖2 = 1. The triplet loss is defined as

Lt =

N∑
i=1

max{0, (‖f(xai )− f(xpi )‖
2
2 − ‖f(xai )− f(xni )‖22 + α)} (42)

where N is the number of images, and ‖×‖22 denotes the squared Euclidean norm.

The hinge loss is used for training maximal margin classifiers, i.e., algorithms that try to find a decision

boundary or hyperplane, subject to some constraints, that maximizes the margin between the cases of the

positive and negative class. An example of such a classifier is the support vector machine [56].

Definition 35. Hinge loss

Let a data set contain n cases xi that belong to either the positive class, y = +1, or

the negative class, y = −1. Let a model C produce scores si ∈ R for the cases, which

are interpretable as signed distances from a decision boundary that separates the positive

from the negative class. The hinge loss for the ith case is defined as

Lh = max{0, 1− yi × si} (43)

The average hinge loss is defined as

L̄h =
1

n

n∑
i=1

max{0, 1− yi × si} (44)

Note that the negative class must be encoded as −1, not as 0, like in the previous examples. Figure 7

shows the hinge loss and the 0-1 loss for y = +1.

If the predicted score, si, and the true class, yi, have the same sign, then the corresponding case lies on

the correct side of the boundary. If in addition the absolute value of si is larger than or equal to 1, then the

hinge loss is 0. The case is considered sufficiently far from the boundary and therefore entails no penalty. If

the score and the true class have opposite signs, then the case lies on the wrong side of the boundary. The

hinge loss is now a linear function of the score. Also, all cases that are on the correct side of the boundary

but not sufficiently far from the boundary, that is, |si| < 1, contribute linearly to the hinge loss.

Figure 8a shows the same data as Figure 1, except that the numbers on the horizontal axis are signed

distances from the decision boundary. These signed distances are the scores, si. Figure 8b shows the ranking

of the cases based on decreasing scores, together with their hinge losses. Note that cases #8 and #3 are

misclassified, as they lie on the wrong side of the boundary. As they have the same distance from the

22



Score

L
o

s
s

Hinge loss

0-1 loss

Figure 7: Hinge loss (red) and 0-1 loss (blue) for y = +1.

boundary, they lead to the same hinge loss of Lh = 2.
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Figure 8: (a) The same ten cases from two classes as shown in Figure 1, except that the numbers on the horizontal axis reflect

signed distances from the decision boundary. (b) Hinge loss of the ten cases.

5. Evaluating an observed value of a performance measure

Once we have the value of our performance measure, how should we interpret it? For example, assume

that we obtain a sensitivity of 0.80—how do we know whether this is a good result or not? The performance

may of course be evaluated based on domain expert knowledge. If such knowledge is not available, however,

then we could consider the statistical significance of the observed performance, keeping of course in mind

the caveats and pitfalls of the p-value and that confidence intervals are always more meaningful than p-

values [32, 45]. The statistical literature contains various approaches for calculating a confidence interval

for a proportion. Here, we will present only two of them: a simple asymptotic confidence interval based

on the normal approximation and the exact Clopper-Pearson confidence interval. We will assume that the
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prediction for an instance xi is independent from the prediction for another instance xj , i 6= j. Also, we

will assume that the test instances were randomly sampled from the target population. In practice, both

assumptions may be violated, of course.

5.1. Significance testing with random permutation tests

Random permutation tests are non-parametric Monte Carlo procedures that make fewer distributional

assumptions than parametric significance tests. Such tests can be used to assess the statistical significance

of an observed result. There exist various random permutation tests; for an overview, see [33, 34]. In our

context, the basic procedure of a random permutation test is as follows:

1. Train the classifier on the training set and apply it to the test set. Calculate the value v of the statistic

of interest, i.e., the value of the performance measure.

2. Randomly permute the class labels of the training set. Thereby, any association between the data set

attributes and the class labels is destroyed.

3. Retrain the classifier on the permuted training set and apply it to the test set. Calculate the statistic

again (i.e., the value wi of the performance measure of interest).

4. Repeat steps (2) and (3) many times (e.g., k = 10 000 times) to generate the empirical distribution

of the statistic under the null hypothesis of no association between the class labels and the data set

attributes.

The p-value is defined as the probability of observing results as extreme as (or more extreme than) the

observed results, given that the null hypothesis is true and given the stopping intentions [35, 45]. The p-value

quantifies the compatibility between the null hypothesis and the observed result: the smaller the p-value,

the less compatible is the null hypothesis with the observed result. We can calculate a permutation-based

p-value for our observed performance v by counting how many values wi are at least as extreme as v. For

example, assume that v = 0.80 is the observed sensitivity. Let us further assume that we performed 10 000

random permutations and that among these, 300 values wi are at least 0.80. Then the one-sided, empirical

p-value is 300
10 000 = 0.03. Thus, under the null hypothesis that there is no association between the attributes

and the class labels, the probability of observing a sensitivity of at least 0.80 is estimated as 0.03.

5.2. Approximate confidence interval for a proportion

Let p denote the (unknown) proportion in a population. For a sufficiently large sample, the sample

proportion, p̂, is approximately normally distributed with a mean of p. The standard deviation of the

sampling distribution of the sample proportion (i.e., the standard error of the sample proportion) is σp̂ =√
p(1−p)
n , which is estimated as sp̂ =

√
p̂(1−p̂)
n . The Wald interval is an approximate (1−α)100% confidence

interval for a population proportion [36].
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Definition 36. Wald confidence interval

Let p̂ denote a proportion estimated from a sample of size n. If np̂ > 5 and n(1 − p̂) >

5, then an approximate asymptotic (1 − α)100% confidence interval for the population

proportion p is given by the Wald interval,

p̂± z1−α/2 ×
√
p̂(1− p̂)

n
(45)

where z1−α/2 is the quantile of the standard normal distribution for probability 1− α/2.

For example, a 95% Wald interval for the sensitivity in the introductory example is calculated as follows.

With TP = 3 and FP = 2, we obtain p̂ = 3
5 (= sensitivity). The interval is then

p̂± z1−α/2 ×
√
p̂(1− p̂)

n
= 0.6± 1.96×

√
0.6× 0.4

5
= 0.6± 0.4294 = [0.1706, 1.0294]. (46)

We see that the upper bound exceeds 1, which, obviously, is the maximum sensitivity; hence, the con-

fidence interval includes values that are impossible. The approximation is not good because the conditions

np̂ = 5× 0.6 > 5 and n(1− p̂) = 5× (1− 0.6) > 5 do not hold; therefore, an exact confidence interval should

be calculated.

5.3. Exact confidence interval for a proportion

An exact confidence interval based on the F -distribution is given by the Clopper-Pearson interval [37].

Definition 37. Exact Clopper-Pearson confidence interval

Let p̂ = r
n denote a proportion estimated from a sample of size n. An exact (1− α)100%

Clopper-Pearson confidence interval for the population proportion p is given by

[
r

r + (n− r + 1)F1−α/2;2(n−r+1),2r
,

(r + 1)F1−α/2;2(r+1),2(n−r)

(n− r) + (r + 1)F1−α/2;2(r+1),2(n−r)

]
(47)

where F1−α/2;df1,df2 is the quantile function of the F -distribution with df1 and df2 degrees

of freedom.

For instance, a 95% confidence interval for the sensitivity in the introductory example is calculated as

follows.

[
3

3 + (5− 3 + 1)F1−0.05/2;2(5−3+1),2×3
,

(3 + 1)F1−0.05/2;2(3+1),2(5−3)

(5− 3) + (3 + 1)F1−0.05/2;2(3+1),2(5−3)

]
= [0.1466, 0.9473].

5.4. Bootstrap percentile confidence interval

To derive a confidence interval analytically, it is necessary to calculate the standard error of the sample

statistic, which is not trivial for the more intricate performance measures. When conventional parametric

confidence intervals are difficult to calculate or when their assumptions (for example, an approximate normal
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distribution) are violated, deriving a bootstrap confidence interval is an interesting alternative. The bootstrap

is a data resampling method for assessing the accuracy of statistical estimates [38, 39, 42, 43]. There exist

different types of bootstrap confidence intervals [40, 41]. One of the simplest ones is the percentile bootstrap

[38]. The basic procedure for deriving a bootstrap percentile confidence interval is as follows [42]:

1. From the available learning set, L, which contains a total of n instances, generate a bootstrap set, B,

by randomly and uniformly sampling n instances with replacement.

2. Repeat step (1) b times to generate Bi bootstrap sets, i = 1..b.

3. Build model C using the set Bi as training set, and apply C to the corresponding out-of-bag set Ti,

which contains the elements from L that are not in Bi.

4. Calculate the value of the performance measure θ̂i from Ti.

5. Repeat steps (3) and (4) for all b bootstrap sets and calculate all θ̂i, i = 1..b.

Definition 38. Bootstrap percentile confidence interval

Let L denote a learning set from a population. Let θ denote the unknown value of a

performance measure for a predictive model C for that population. Let Bi denote the ith

bootstrap set (i.e., ith training set) that was sampled uniformly with replacement from L,

and let the number of instances in Bi and L be the same. Let Ti denote the ith out-of-bag

test set, with Ti = L \ Bi. The model C is trained on Bi and then applied to Ti. Let θ̂i

denote the resulting value of the performance measure. A (1−α)100% bootstrap percentile

confidence interval (CIboot) for θ is given by

CIboot = [θ̂α/2, θ̂1−α/2] (48)

where θ̂α/2 and θ̂1−α/2 are the α/2 and 1− α/2 percentiles, respectively, of the empirical

distribution of θ̂.

In R, bootstrap confidence intervals can be generated with the function boot.ci of the package boot

[46, 47].

6. Discussion

Which performance measure should be used in practice? This question does not have a definitive answer,

as the different measures quantify different aspects of the performance. If a predictive model is developed

for a concrete application, then it is often clear which performance measure matters most. On the other

hand, if the general usefulness of a new classifier is to be assessed, then the choice of the most appropriate

measure is often not obvious. In that case, reporting several measures can be meaningful.

When the classes are highly imbalanced, accuracy and error rate are not really meaningful. For example,

assume that the class ratio is 9:1 in both the training and test set. A model that always predicts the majority
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class (i.e., a majority voter) is expected to achieve an accuracy of 90%, although it has not learned anything

from the data beyond the class priors. For data sets with highly imbalanced classes, the average precision

(Definition 32) is a recommended ranking measure. The average precision is also easily extended to more

than two classes as mean average precision. Also, the balanced cross-entropy (Definition 21) and the focal

loss (Definition 22) are good performance measures when the classes are imbalanced.

Performance measures that are based on a probabilistic interpretation of error are, in general, preferable

to measures that rely on a single classification threshold. For example, let us assume that model A made the

predictions shown in Table 2, and let us assume that model B made the same predictions, except that case

#8 was misclassified with a score of 0.79. This is clearly a worse prediction than that of model A, which

produced the score 0.75 for case #8. However, for t5, the threshold-based measures would not discriminate

between A and B, in contrast to the measures that are based on a probabilistic interpretation of error.

Graphical tools such as ROC curves, lift charts, TPR-FPR plots, and precision-recall curves generally

paint a clearer picture of the predictive performance than summary statistics. Clearly, it is often desirable

to use a single value, for example, in order to tabulate the results of various models so that they can be

ranked from best to worst, which is commonly done in data mining competitions. However, we have to keep

in mind that we lose important information when we condense a two-dimensional plot into a single scalar.

Thus, whenever possible, performance plots are preferable to scalars.

Ranking measures that are derived from such plots are popular evaluation measures; particularly, the

AUC is widely used in machine learning. In contrast to accuracy, for example, the AUC is relatively robust

to class imbalances and other types of noise [27, 28]. Therefore, the AUC is not a bad choice as a performance

measure, although several shortcomings have been pointed out[25, 48, 49, 50]. For example, consider a drug

discovery study that aims at ranking thousands of chemical compounds based on their toxicological effect.

Here, it is typically possible to follow up on only a small number of top-ranked compounds, which should

be predicted very accurately. By contrast, it may be irrelevant how well the lower-ranked compounds were

predicted. This is also known as the early retrieval problem: although we are interested in only the top-

ranked instances, the AUC also reflects the quality of the predictions of the remaining instances, which may

not be interesting.

There exists an equivalence between ROC curves and precision-recall curves, in the sense that they contain

the same points for the same predictive model [30]. However, for data sets with highly imbalanced classes,

precision-recall curves are more informative than ROC curves because precision-recall curves emphasize the

performance with respect to the top-ranked cases [51]. In other words, if the correctness of the few top-

ranked instances matters most (like in the mentioned drug discovery study), then precision-recall curves are

preferable to ROC curves. This might explain why the average precision is more commonly used than the

AUC in information retrieval [52].

Importantly, the performance measure in the training phase should be the same as the measure in the

validation and test phase, since a model that was optimized to achieve, say, a high AUC on the training set
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is not necessarily expected to achieve, say, a low logloss on the test set. There are further important aspects

that need to be considered when we evaluate a predictive model or learning algorithm, such as the choice of

benchmark data sets, data resampling strategies, statistical tools to compare different models or algorithms,

etc. These aspects are beyond the scope of this article; for a more in-depth discussion, see for example [53].
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