
Bayes’ Theorem and Naive Bayes Classifier1

Daniel Berrar

Machine Learning Research Group
School of Mathematics and Statistics

The Open University, Milton Keynes, United Kingdom
Email: daniel.berrar@open.ac.uk

and
Department of Information and Communications Engineering, School of Engineering,

Tokyo Institute of Technology, Tokyo, Japan

Abstract

This article gives a mathematically rigorous yet easily accessible introduction to Bayes’ theorem and the

foundations of naive Bayes learning. Starting from the fundamental elements of probability theory, this

article outlines all steps leading to one of the oldest workhorses of machine learning: the naive Bayes

classifier. As a tutorial, the text enables novice practitioners to quickly understand the essential concepts.

As an encyclopedic article, the text provides a complete reference for bioinformaticians, computer scientists,

and statisticians, with an illustration of some caveats and pitfalls—and how to avoid them—in building a

naive Bayes classifier in the R programming language.

Keywords: Alternative hypothesis, Bayes factor, Bayes factor bound, Bayes’ theorem, classification,

classifier, Laplace smoothing, likelihood, maximum posterior rule, missing value, naive Bayes classifier, null

hypothesis, p-value, sensitivity, specificity, prevalence, total probability theorem, Venn diagram

Key points

• This article gives a mathematically rigorous, step-by-step introduction to Bayes’

theorem and the naive Bayes classifier.

• Applications of Bayes’ theorem and the naive Bayes classifier are illustrated with

examples from bioinformatics.

• An implementation of the naive Bayes classifier in R is discussed, with a focus on

some caveats and pitfalls.

1This article is the revised version of [7] for the 2nd edition of the Encyclopedia of Bioinformatics and Computational
Biology, Elsevier.

Preprint submitted to Encyclopedia of Bioinformatics and Computational Biology, 2nd edition (Elsevier) March 24, 2024

1. Introduction

Bayes’ theorem is of fundamental importance for inferential statistics and many advanced machine learn-

ing models. Bayesian reasoning is a logical approach to updating the probability of hypotheses in the light

of new evidence, and it therefore rightly plays a pivotal role in science [1]. Bayesian analysis allows us to

answer questions for which frequentist statistical methods were not developed. In fact, the very idea of

assigning a probability to a hypothesis is not part of the frequentist paradigm. The goal of this article

is to provide both a mathematically rigorous yet concise explanation of the foundation of Bayesian statis-

tics: Bayes’ theorem, which underpins a simple but powerful machine learning algorithm: the naive Bayes

classifier [2]. In contrast to many other texts on these topics, this article is self-contained; it explains all

terms and notations in detail and provides illustrative examples. As a tutorial, this text should therefore

be easily accessible to readers from various backgrounds. As an encyclopedic article, it provides a complete

reference for bioinformaticians, machine learners, and statisticians. Readers who are already familiar with

the statistical background may find the practical examples in Section 3 most useful. Specifically, Section 3

highlights some caveats and pitfalls—and how to avoid them—in building a naive Bayes classifier using R,

with additional materials available at the accompanying website http://osf.io/92mes.

2. Fundamentals

2.1. Basic Notation and Concepts

A statistical experiment can be broadly defined as a process that results in one and only one of several

possible outcomes. The collection of all possible outcomes is called the sample space, denoted by Ω. At the

introductory level, we can describe events by using notation from set theory. For example, our experiment

may be one roll of a fair die. The sample space is then Ω = {1, 2, 3, 4, 5, 6}, which is also referred to as

universal set in the terminology of set theory. A simple event is, for instance, the outcome 2, which we

denote as E1 = {2}. The probability of an event is denoted by P (·). According to the classic concept

of probability, the probability of an event E is the number of outcomes that are favorable to this event,

divided by the total number of possible outcomes for the experiment, P (E) = |E|
|Ω| , where |E| denotes the

cardinality of the set E, i.e., the number of elements in E. In our example, the probability of rolling a 2 is

P (E1) = |E1|
|Ω| = 1

6 . The event “the number is even” is a compound event, denoted by E2 = {2, 4, 6}. The

cardinality of E2 is 3, so the probability of this event is P (E2) = 3
6 .

The complement of E is the event that E does not occur and is denoted by Ec, with P (E) = 1−P (Ec).

In the example, Ec2 = {1, 3, 5}. In the literature, the complement of an event A is also often represented by

the symbol Ā. Furthermore, P (A|B) denotes the conditional probability of A given B. Finally, ∅ denotes

the empty set, i.e., ∅ = {}.

Let A and B be two events from a sample space Ω, which is either finite with N elements or countably

infinite. Let P : Ω → [0, 1] be a probability distribution on Ω, such that 0 < P (A) < 1 and 0 < P (B) < 1

2

http://osf.io/92mes

and, obviously, P (Ω) = 1. We can represent these events in a Venn diagram (Fig. 1a). The union of the

events A and B, denoted by A ∪ B, is the event that either A or B or both occur. The intersection of the

events A and B, denoted by A ∩ B, is the event that both A and B occur. Finally, two events, A and B,

are called mutually exclusive if the occurrence of one of these events rules out the possibility of occurrence

of the other event. In the notation of set theory, this means that A and B are disjoint, i.e., A∩B = ∅. Two

events A and B, with P (A) > 0 and P (B) > 0, are called independent if the occurrence of one event does

not affect the probability of occurrence of the other event, i.e. P (A|B) = P (A) or P (B|A) = P (B), and

P (A ∩B) = P (A)× P (B).

Note that the conditional probability, P (A|B), is the joint probability P (A ∩B) divided by the marginal

probability P (B). This is a fundamental relation, which has a simple geometrical interpretation. Loosely

speaking, given that we are in the ellipse B (Fig. 1a), what is the probability that we are also in A? To

be also in A, we have to be in the intersection A ∩ B. Hence, the probability is equivalent to the number

of elements in the intersection, |A ∩ B|, divided by the number of elements in B, i.e., |B|. Formally,

P (A|B) = |A∩B|
|B| = |A∩B|/|Ω|

|B|/|Ω| = P (A∩B)
P (B) .

Figure 1: (a) Venn diagram for sets A and B. (b) Illustration of the total probability theorem. The sample space Ω is divided

into five disjoint sets A1 to A5, which partly overlap with set B.

2.2. Total Probability Theorem

Before deriving Bayes’ theorem, it is useful to consider the total probability theorem. First, the addition

rule for two events, A and B, is easily derived from Figure 1a:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (1)

We assume that the sample space can be divided into n mutually exclusive events Ai, i = 1..n, as shown

in Figure 1(b). Specifically,

1. A1 ∪A2 ∪ · · · ∪An = Ω

2. Ai ∩Aj = ∅ for i 6= j

3. Ai 6= ∅

3

From Figure 1(b), it is obvious that B can be stated as

B = (B ∩A1) ∪ (B ∩A2) ∪ · · · ∪ (B ∩An)

and we obtain the total probability theorem as

P (B) = P (B ∩A1) + P (B ∩A2) + · · ·+ P (B ∩An)− P (B ∩A1 ∩ · · · ∩B ∩An)︸ ︷︷ ︸
=0, because Ai∩Aj=∅ for i 6=j

= P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)

=

n∑
i=1

P (B|Ai)P (Ai) (2)

which can be rewritten as

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac) (3)

because A2 ∪ A3 ∪ ... ∪ An is the complement of A1 (cf. conditions 1 and 2 above). Redefining A := A1

and Ac := A2 ∪A3 ∪ ... ∪An gives Eq. 3.

2.3. Bayes’ Theorem

Assuming that |A| 6= 0 and |B| 6= 0, we can state the following:

P (A|B) =
|A ∩B|
|B|

=

|A∩B|
|Ω|
|B|
|Ω|

=
P (A ∩B)

P (B)
(4)

P (B|A) =
|B ∩A|
|A|

=

|B∩A|
|Ω|
|A|
|Ω|

=
P (A ∩B)

P (A)
(5)

From Eq. 4 and Eq. 5, it is immediately obvious that

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (6)

and therefore

P (A|B) =
P (B|A)P (A)

P (B)
(7)

which is the simplest and perhaps the most memorable formulation of Bayes’ theorem.

If the sample space Ω can be divided into finitely many mutually exclusive events A1, A2, ...An, and if B

is an event with P (B) > 0, which is a subset of the union of all Ai, then for each Ai, the generalized Bayes’

formula is

P (Ai|B) =
P (B|Ai)P (Ai)∑n
j=1 P (B|Aj)P (Aj)

(8)

4

which can be rewritten as

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
(9)

Both Eq. 8 and Eq. 9 follow from Eq. 7 because of the total probability theorem (Eq. 2 and Eq. 3).

Bayes’ theorem can be used to derive the posterior probability of a hypothesis given observed data:

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)
(10)

where P (data|hypothesis) is the likelihood of the data given the hypothesis (“if the hypothesis is true, then

what is the probability of observing these data?”), P (hypothesis) is the prior probability of the hypothesis

(“what is the a priori probability of the hypothesis?”), and P (data) is the probability of observing the

data, irrespective of the specified hypothesis. The prior probability (short, prior) is also referred to as the

(initial) degree of belief in the hypothesis. In other words, the prior quantifies the a priori plausibility of

the hypothesis.

It is often assumed that the data can arise under two competing hypotheses, H1 and H2, with P (H1) =

1 − P (H2). Instead of “hypothesis”, the term “model” is also frequently used. Let D denote the observed

data. Then the posterior probability of the hypothesis (or model) H1 is

P (H1|D) =
P (D|H1)P (H1)

P (D|H1)P (H1) + P (D|H2)P (H2)
(11)

and the posterior probability of H2 is

P (H2|D) =
P (D|H2)P (H2)

P (D|H1)P (H1) + P (D|H2)P (H2)
(12)

From Eq. 11 and Eq. 12, we obtain

P (H1|D)

P (H2|D)︸ ︷︷ ︸
posterior odds

=
P (D|H1)

P (D|H2)︸ ︷︷ ︸
Bayes factor B12

× P (H1)

P (H2)︸ ︷︷ ︸
prior odds

(13)

The Bayes factor is the ratio of the posterior odds of H1 to its prior odds. The Bayes factor can be

interpreted as a summary measure of the evidence that the data provide us in favor of the hypothesis

H1 against its competing hypothesis H2. If the prior probability of H1 is the same as that of H2 (i.e.,

P (H1) = P (H2) = 0.5), then the Bayes factor is the same as the posterior odds.

Note that in the simplest case, neither H1 nor H2 have any free parameters, and the Bayes factor then

corresponds to the likelihood ratio [9]. If, however, at least one of the hypotheses (or models) has unknown

parameters, then the conditional probabilities are obtained by integrating over the entire parameter space

of Hi [9],

P (D|Hi) =

∫
P (D|θi, Hi)P (θi|Hi)dθi (14)

5

where θi denotes the parameters under Hi.

Note that Eq. 13 shows the Bayes factor B12 for only two hypotheses, but of course we may also consider

more than just two. In that case, we can write Bij to denote the Bayes factor for Hi against Hj . When

only two hypotheses are considered, they are commonly referred to as null hypothesis, H0, and alternative

hypothesis, H1. Jeffreys suggests grouping the values of B01 into grades [10] (Table 1):

Table 1: Interpretation of Bayes factor B01 according to [10].

Grade B01 Interpretation

0 B01 > 1 Null hypothesis H0 supported

1 1 > B01 > 0.32 Evidence against H0, but not worth more than a bare mention

2 0.32 > B01 > 0.10 Evidence against H0 substantial

3 0.10 > B01 > 0.032 Evidence against H0 strong

4 0.032 > B01 > 0.01 Evidence against H0 very strong

5 0.01 > B01 Evidence against H0 decisive

It is instructive to compare the Bayes factor with the p-value from Fisherian significance testing. In

short, the p-value is defined as the probability of obtaining a result as extreme as (or more extreme than) the

actually observed result, given that the null hypothesis is true and given the stopping and testing intentions

[6]. The p-value is often considered an evidential weight against the null hypothesis: the smaller the p-value,

the greater the weight against H0. However, the p-value can be a highly misleading measure of evidence

because it overstates the evidence against H0 [3, 4, 5, 6].

A Bayesian calibration of p-values is described in [8]. This calibration leads to the Bayes factor bound

(BFB),

Bayes factor ≤ BFB ≡ 1

−e p ln(p)
(15)

where e is the base of the natural logarithm, and p is the p-value, with p < e−1 = 0.368. Here, BFB is an

upper bound on the Bayes factor over any reasonable choice of the prior distribution of the hypothesis “H0

is not true”, which we may refer to as “alternative hypothesis”. For example, a p-value of 0.01 corresponds

to an odds of, at most, about 8 to 1 in favor of “H0 is not true”. For a deeper discussion of the Bayes factor

bound and the p-value, see [6, pp.1123–1126].

Note that the concept of “alternative hypothesis” does not exist in the Fisherian significance testing,

which considers only one hypothesis, i.e., the null hypothesis H0. The idea of “alternative hypothesis” is

firmly embedded in the Neyman-Pearsonian hypothesis testing, where the concept of the p-value does not

exist. The two different schools of thought—the Fisherian and the Neyman-Pearsonian—should not be

conflated; see, for example, [4, 6].

6

So far, we have considered only the discrete case, i.e., when the sample space is countable. What if the

variables are continuous? Let X and Y denote two continuous random variables with joint probability density

function fXY (x, y). Let fX|Y (x|y) and fY |X(y|x) denote their conditional probability density functions. Then

fX|Y (x|y) =
fXY (x, y)

fY (y)
(16)

and

fY |X(y|x) =
fXY (x, y)

fX(x)
(17)

so that Bayes’ theorem for continuous variables can be stated as

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
, (18)

where fY (y) =
∫
X
fY |X(y|x)fX(x)dx =

∫ +∞
−∞ fXY (x, y)dx because of the total probability theorem. Com-

pare this with the discrete case: PX(x) = PX|Y (x|y1)PY (y1)+· · ·+PX|Y (x|yn)PY (yn) =
∑
y PX|Y (x|y)PY (y) =∑

y PXY (x, y).

To summarize, in Bayesian reasoning, we state a hypothesis with an initial degree of belief (i.e., the prior

probability of the hypothesis, or prior for short). This prior is updated in light of new evidence. The resulting

probability is the posterior probability of the hypothesis, given the new evidence. Bayes’ theorem provides

a logical method that combines new evidence (i.e., new data, new observations) with prior probabilities of

hypotheses in order to obtain posterior probabilities for these hypotheses.

2.4. Naive Bayes Classifier

We assume that a data set contains n instances (or cases) xi, i = 1..n, which consist of p attributes, i.e.,

xi = (xi1, xi2, ..., xip). Each instance is assumed to belong to one (and only one) class y ∈ {y1, y2, ..., yc}.

Most predictive models in machine learning generate a numeric score s for each instance xi. This score

quantifies the degree of class membership of that case in class yj . If the data set contains only positive and

negative instances, y ∈ {0, 1}, then a predictive model can either be used as a ranker or as a classifier. The

ranker uses the scores to order the instances from the most to the least likely to be positive. By setting a

threshold t on the ranking score, s(x), such that {s(x) ≥ t} = 1, the ranker becomes a (crisp) classifier [11].

The naive Bayes classifier belongs to the family of generative classifiers that try to learn the underlying

distributions of the classes. By contrast, discriminative classifiers, such as support vector machines, construct

a hard or soft boundary between the classes, which is used to classify the cases.

Naive Bayes learning refers to the construction of a Bayesian probabilistic model that assigns a posterior

class probability to an instance: P (Y = yj |X = xi). The simple naive Bayes classifier uses these probabilities

7

to assign an instance to a class. Applying Bayes’ theorem (Eq. 7), and simplifying the notation a little, we

obtain

P (yj |xi) =
P (xi|yj)P (yj)

P (xi)
(19)

Note that the numerator in Eq. 19 is the joint probability of xi and yj (cf. Eq. 6). The numerator can

therefore be rewritten as follows; here, we will just use x, omitting the index i for simplicity:

P (x|yj)P (yj) = P (x, yj)

= P (x1, x2, ..., xp, yj)

= P (x1|x2, x3, ..., xp, yj)P (x2, x3, ..., xp, yj) because P (a, b) = P (a|b)P (b)

= P (x1|x2, x3, ..., xp, yj)P (x2|x3, x4, ..., xp, yj)P (x3, x4, ..., xp, yj)

= P (x1|x2, x3, ..., xp, yj)P (x2|x3, x4, ..., xp, yj) · · ·P (xp|yj)P (yj)

Let us assume that the individual xi are independent from each other. This is a strong assumption, which

is clearly violated in most practical applications and is therefore naive—hence the name. This assumption

implies that P (x1|x2, x3, ..., xp, yj) = P (x1|yj), for example. Thus, the joint probability of x and yj is

P (x|yj)P (yj) = P (x1|yj)× P (x2|yj)× · · · × P (xp|yj)P (yj)

=

p∏
k=1

P (xk|yj)P (yj) (20)

which we can plug into Eq. 19 and we obtain

P (yj |x) =

∏p
k=1 P (xk|yj)P (yj)

P (x)
(21)

Note that the denominator, P (x), does not depend on the class—for example, it is the same for class yj

and yl. P (x) acts as a scaling factor and ensures that the posterior probability P (yj |x) is properly scaled

(i.e., a number between 0 and 1). When we are interested in a crisp classification rule, that is, a rule that

assigns each instance to exactly one class, then we can simply calculate the value of the numerator for each

class and select that class for which this value is maximal. This rule is called the maximum posterior rule

(Eq. 22). The resulting “winning” class is also known as the maximum a posteriori (MAP) class, and it is

calculated as ŷ for the instance x as follows:

ŷ = argmax
yj

p∏
k=1

P (xk|yj)P (yj) (22)

A model that implements Eq. 22 is called a (simple) naive Bayes classifier.

8

A crisp classification, however, is often not desirable. For example, in ranking tasks involving a positive

and a negative class, we are often more interested in how well a model ranks the cases of one class in relation

to the cases of the other class [12]. The estimated class posterior probabilities are natural ranking scores.

Applying again the total probability theorem (Eq. 3), we can rewrite Eq. 21 as

P (yj |x) =

∏p
k=1 P (xk|yj)P (yj)∏p

k=1 P (xk|yj)P (yj) +
∏p
k=1 P (xk|ycj)P (ycj)

. (23)

3. Examples

3.1. Application of Bayes’ Theorem in Medical Screening

Consider a population of people in which 1% really have a certain disease, D, i.e., the prevalence of the

disease is 0.01. A medical screening test is applied to 1000 randomly selected persons from that popula-

tion. It is known that the sensitivity of the test is 0.90 (or 90%), and the specificity of the test is 0.91 (or 91%).

(a) If a tested person is really sick, then what is the probability of a positive test result (i.e., the result

of the test indicates that the person is sick)?

(b) If the test is positive, then what is the probability that the person is really sick?

(c) If the test is negative, then what is the probability that the person is really not sick?

The probability that a randomly selected person has the disease is given as P (D) = 0.01 and thus P (Dc) =

0.99. These are the marginal probabilities that are known a priori, that is, without any knowledge of the

person’s test result. The sensitivity of a test is defined as TP
TP+FN , where TP denotes the number of true

positive predictions and FN denotes the number of false negative predictions. Sensitivity is therefore also

known as true positive rate; in information retrieval and data mining, it is also called recall. The specificity

of a test is defined as TN
TN+FP , where TN denotes the number of true negative predictions and FP denotes

the number of false positive predictions. Let ⊕ denote a positive and 	 a negative test result, respectively.

The answer to (a) is therefore simple—in fact, it is already given: the conditional probability P (⊕|D) is the

same as the sensitivity, since the number of persons who are really sick is the same as the number of true

positive predictions (persons that are sick and that are correctly identified as such by the test), plus the

number of false negative predictions (persons that are sick but that are not identified as sick by the test).

Thus, P (⊕|D) = TP
TP+FN = 0.9.

To answer (b), we use Bayes’ theorem,

P (D|⊕) = P (⊕|D)P (D)

P (⊕|D)P (D) + P (⊕|Dc)P (Dc)
(24)

The only unknown in Eq. 24 is P (⊕|Dc), which we can easily derive from the given information: if

the specificity is 0.91 or 91%, then the false positive rate must be 1 − 0.91 = 0.09 or 9%. But the false

9

positive rate is the same as the conditional probability of a positive result, given the absence of disease, i.e.,

P (⊕|Dc) = 0.09. Thus,

P (D|⊕) = 0.9× 0.01

0.9× 0.01 + 0.09× 0.99
= 0.092 (25)

It can be insightful to represent the given information in a confusion matrix (Table 2). Here, the number

of true negatives and false positives are rounded to the nearest integer. From the table, we can readily infer

the chance of disease given a positive test result as 9
9+89 , i.e., just a bit more than 9%.

Table 2: Confusion table for the example on medical screening.

D Dc Σ

⊕ TP = 9 FP = 89 98

	 FN = 1 TN = 901 902

Σ 10 990 1000

The conditional probability P (D|⊕) is also known as positive predictive value in epidemiology or as

precision in data mining and related fields. What is the implication of this probability being 0.092? The

numbers in this example refer to health statistics for breast cancer screening with mammography [14]. A

positive predictive value of just over 9% means that only about 1 out of every 10 women with a positive

mammogram actually has breast cancer; the remaining 9 persons are falsely alarmed.

Gigerenzer et al. showed that many gynecologists do not know the probability that a person has a disease

given a positive test result, even when they are given appropriate health statistics framed as conditional

probabilities [14]. By contrast, if the information is reframed in terms of natural frequencies (as in 9
9+89 in

this example), then the information is often easier to understand.

To answer (c), we proceed analogously,

P (Dc|) = P (|Dc)P (Dc)

P (|Dc)P (Dc) + P (|D)P (D)
=

0.91× 0.99

0.91× 0.99 + 0.1× 0.01
= 0.9988912 (26)

Alternatively, by using the numbers from Table 2, we obtain 901
902 = 0.9988914. The very small numeric

difference is due to rounding errors.

What might be surprising is that the probability is only 0.092 that a positively tested person really has

the disease—despite the high sensitivity of 90% and the high specificity of 91%. However, these metrics are

not to be misinterpreted as the chances that a tested person has the disease; instead, the test result updates

the chances of having the disease: before the test, a person from this population was assumed to have a

(prior) probability of 0.01 of having the disease. The new evidence from a positive test now updates this

probability to 0.092.

10

3.2. Naive Bayes Classifier – Introductory Example

We illustrate naive Bayes learning using the contrived data set shown in Table 3. This example is inspired

by the famous Play Tennis data set, which is often used to illustrate naive Bayes learning in introductory

data mining textbooks [15]. In Table 3, the first 14 instances refer to biological samples that belong to

either the class tumor or the class normal. These samples represent the training set. Each instance is

described by an expression profile of only four genes. Here, the gene expression values are discretized into

either underexpressed (−1), overexpressed (+1), or normally expressed (0). Sample #15 represents a new

biological sample. What is the likely class of this sample? Note that the particular combination of features,

x15 = (+1,−1,+1,+1), does not appear in the training set.

Table 3: Contrived gene expression data set of 15 biological samples, each described by the discrete expression level of 4 genes.

A sample belongs either to class “normal” or “tumor”. Instance #15 is a new, unclassified sample.

Sample Gene A Gene B Gene C Gene D Class

1 +1 +1 +1 0 normal

2 +1 +1 +1 +1 normal

3 0 +1 +1 0 tumor

4 −1 0 +1 0 tumor

5 −1 −1 0 0 tumor

6 −1 −1 0 +1 normal

7 0 −1 0 +1 tumor

8 +1 0 +1 0 normal

9 +1 −1 0 0 tumor

10 −1 0 0 0 tumor

11 +1 0 0 +1 tumor

12 0 0 +1 +1 tumor

13 0 +1 0 0 tumor

14 −1 0 +1 +1 normal

15 +1 −1 +1 +1 unknown

Using Eq. 21, we obtain

P (tumor|x15) =
P (A = +1|tumor)× P (B = −1|tumor)× P (C = +1|tumor)× P (D = +1|tumor)× P (tumor)

P (x15)

Let’s begin with the prior probability of “tumor”, P (tumor). This probability can be estimated as the

fraction of tumor samples in the data set, i.e., P (tumor) = 9
14 . What is the fraction of samples for which gene

A is overexpressed (+1), given that the class is “tumor”? As as an estimate for this conditional probability,

P (Gene A = +1|tumor), the empirical value of 2
9 (cf. samples #9 and #11) will be used.

11

Next, to calculate P (B = −1|tumor), we proceed as follows: among the nine tumor samples, for how

many do we observe B = −1? We observe B = −1 for cases #5, #7, and #9, so the conditional probability

is estimated as 3
9 . The remaining conditional probabilities are derived analogously. Thus, we obtain

P (tumor|x15) =
2
9 ×

3
9 ×

3
9 ×

3
9 ×

9
14

P (x15)
=

0.00529

P (x15)

P (normal|x15) =
3
5 ×

1
5 ×

4
5 ×

3
5 ×

5
14

P (x15)
=

0.02057

P (x15)

With the denominator P (x15) = 0.00529 + 0.02057, we then obtain the properly scaled probabilities

P (tumor|x15) = 0.2046 and P (normal|x15) = 0.7954.

3.3. Laplace Smoothing

When the number of samples is small, a problem may arise over how to correctly estimate the probability

of an attribute given the class. Let us assume that at least one attribute value of the test instance, x, is

absent in all training instances of a class yi. For example, assume that Gene A of instance #9 and #11 in

Table 3 are underexpressed (−1) instead of overexpressed (+1). Then we obtain the following conditional

probabilities,

P (Gene A = +1|tumor) =
0

9

P (Gene A = 0|tumor) =
4

9

P (Gene A = −1|tumor) =
5

9

which obviously leads to P (tumor|x15) = 0. If Gene A is underexpressed (−1) in instances #9 and #11

in Table 3, then P (Gene A = +1|tumor) = 0, which implies that it is impossible to observe an overexpressed

Gene A in a sample of class “tumor”. Is it wise to make such a strong assumption? Probably not. It might be

better to allow for a small, non-zero probability. This is what Laplace smoothing does [15]. In this example,

we simply add 1 to each of the three numerators above and then add 3 to each of the denominators:

P (Gene A = +1|tumor) =
0 + 1

9 + 3

P (Gene A = 0|tumor) =
4 + 1

9 + 3

P (Gene A = −1|tumor) =
5 + 1

9 + 3

However, instead of adding 1, we could also add a small positive constant c weighted by pi,

12

P (Gene A = +1|tumor) =
0 + cp1

9 + c

P (Gene A = 0|tumor) =
4 + cp2

9 + c

P (Gene A = −1|tumor) =
5 + cp3

9 + c

with p1 + p2 + p3 = 1, which are the prior probabilities for the states of expression for Gene A. Although

such a fully Bayesian specification is possible, in practice, it is often unclear how the priors should be

estimated, and simple Laplace smoothing is often appropriate [15].

3.4. Mixed Variables

In contrast to many other machine learning models, the naive Bayes classifier can easily cope with

mixed-variable data sets. For example, consider Table 4. Here, Gene B has numeric expression values.

Table 4: Contrived gene expression data set from Table 3. Here, absolute expression values are reported for Gene B.

Sample Gene A Gene B Gene C Gene D Class

1 +1 35 +1 0 normal

2 +1 30 +1 +1 normal

3 0 32 +1 0 tumor

4 −1 20 +1 0 tumor

5 −1 15 0 0 tumor

6 −1 13 0 +1 normal

7 0 11 0 +1 tumor

8 +1 22 +1 0 normal

9 +1 14 0 0 tumor

10 −1 24 0 0 tumor

11 +1 23 0 +1 tumor

12 0 25 +1 +1 tumor

13 0 33 0 0 tumor

14 −1 21 +1 +1 normal

15 +1 12 +1 +1 unknown

Assuming that the expression values of Gene B follow a normal distribution, we can model the probability

density for class yi as

f(x|yi) =
1√

2πσi
e
− 1

2 (
x−µi
σi

)2
(27)

13

where µi and σi denote the mean and standard deviation of the gene expression value for class yi,

respectively. Of course, in practice, other distributions are possible, and we need to choose the density

that best describes the data. In the example, we obtain µtumor = 21.9, σtumor = 7.7, and µnormal = 24.2,

σnormal = 8.5. Note that the probability that a continuous random variable X takes on a particular value is

always zero for any continuous probability distribution, i.e., P (X = x) = 0. However, using the probability

density function, we can calculate the probability that X lies in a narrow interval [x0− ε
2 , x0 + ε

2] around x0

as ε×f(X = x0). For the new instance x15 (Table 4), we obtain f(12|tumor) = 0.02267 and f(12|normal) =

0.01676, so that we can state the conditional probabilities as

P (tumor|x15) =
2
9 × 0.0227ε× 3

9 ×
3
9 ×

9
14

P (x15)
=

0.00036ε

P (x15)
and

P (normal|x15) =
3
5 × 0.01676ε× 4

5 ×
3
5 ×

5
14

P (x15)
=

0.00172ε

P (x15)

The posterior probabilities are P (tumor|x15) = 0.00036ε
0.00036ε+0.00172ε = 0.17 and P (normal|x15) = 0.00172ε

0.00036ε+0.00172ε =

0.83. Note that ε cancels.

3.5. Missing Value Imputation

Missing values do not present any problem for the naive Bayes classifier. Let us assume that the new

instance contains missing values (encoded as NA), for example, x15 = (+1,NA,+1,+1). The posterior

probability for class yi can then be calculated by simply omitting this attribute, i.e.,

P (tumor|x15) =
2
9 ×

3
9 ×

3
9 ×

9
14

P (x15)
=

0.016

P (x15)
and

P (normal|x15) =
3
5 ×

4
5 ×

3
5 ×

5
14

P (x15)
=

0.103

P (x15)

If the training set has missing values, then the conditional probabilities can be calculated by omitting

these values. For example, suppose that the value +1 is missing for Gene A in sample #1 (Table 3). What is

the probability that Gene A is overexpressed (+1), given that the sample is normal? There are five normal

samples, and two of them (#2 and #8, Table 4) have an overexpressed Gene A. Therefore, the conditional

probability is calculated as P (Gene A = +1|normal) = 2
5 .

3.6. Optimality of the Naive Bayes Classifier

If the assumption of independence holds for the predictive features, then the naive Bayes classifier provides

optimal classification, in the sense that it minimizes the 0-1 loss [18, 13]. Let xi denote one of the cases that

14

are to be classified. We assume a binary classification problem, that is, a case can either belong to class y1

or y2. When we classify xi, the probability of making an error is then

P (err|xi) =

P (y1|xi) if we decide that xi belongs to class y2

P (y2|xi) if we decide that xi belongs to class y1

(28)

It is intuitive to classify a case xi as a member of class y1 if P (y1|xi) > P (y2|xi) and y2 otherwise. This

rule minimizes the average probability of error, since

P (err) =

∫
P (err,x) dx =

∫
P (err|x)P (x) dx

If P (err|x) is as small as possible for every x, then the integral must be as small as possible, too.

Thus, the decision rule for minimizing the probability of error is: classify x as a member of class y1 if

P (y1|x) > P (y2|x), and classify x as a member of class y2 otherwise. According to Bayes’ theorem, an

equivalent statement is the following: classify x as a member of class y1 if P (x|y1)P (y1) > P (x|y2)P (y2),

and classify x as a member of class y2 otherwise. This rule can be extended to multiple classes.

3.7. R Implementation

We will now illustrate how to build a naive Bayes classifier using the function naiveBayes() of the package

e1073 [16] in the programming language and environment R [17], which is widely used by the bioinformatics

community. Here, we use the data from Table 3, which are available from http://osf.io/92mes.

library(e1071)

#’ Load the data.

train <- read.csv("NB_train.csv", colClasses = c(’factor’, ’factor’, ’factor’, ’factor’))

test <- read.csv("NB_test.csv", colClasses = c(’factor’, ’factor’, ’factor’, ’factor’))

Build the model.

NB_model <- naiveBayes(Class ~ ., data = train)

Predict the test case.

pred <- predict(NB_model, test, type = "raw")

pred

normal tumor

[1,] 0.000202459 0.9997975

Surprisingly, these probabilities differ from what we calculated above, namely P (tumor|x15) = 0.2046

and P (normal|x15) = 0.7954. Why? The problem can be quite hard to spot. The reason is that the factor

levels (per attribute) are not the same in the training and the test set, which causes predict() to calculate

15

http://osf.io/92mes

incorrect probabilities. Internally, predict() converts attribute values into numbers, and it does not check

whether the factor levels are consistent or not.

str(train)

’data.frame’: 14 obs. of 5 variables:

$ Gene_A: Factor w/ 3 levels "0","-1","+1": 3 3 1 2 2 2 1 3 3 2 ...

$ Gene_B: Factor w/ 3 levels "0","-1","+1": 3 3 3 1 2 2 2 1 2 1 ...

$ Gene_C: Factor w/ 2 levels "0","+1": 2 2 2 2 1 1 1 2 1 1 ...

$ Gene_D: Factor w/ 2 levels "0","+1": 1 2 1 1 1 2 2 1 1 1 ...

$ Class : Factor w/ 2 levels "normal","tumor": 1 1 2 2 2 1 2 1 2 2 ...

str(test)

’data.frame’: 1 obs. of 5 variables:

$ Gene_A: Factor w/ 1 level "+1": 1

$ Gene_B: Factor w/ 1 level "-1": 1

$ Gene_C: Factor w/ 1 level "+1": 1

$ Gene_D: Factor w/ 1 level "+1": 1

$ Class : Factor w/ 1 level "unknown": 1

As we can see, the factor levels are not the same in the training and test set. The user has to ensure

factor level consistency. A simple solution consists in first appending the test case to the training set and

then splitting them apart. Note that the class labels also have to be consistent. At the moment, the test

case has the class label “unknown”, but this is not a valid label. When we add the test case to the training

set, we erroneously increase the factor level of “Class”, which in turn will cause naiveBayes() to assume

that there are three classes in total.

train_save <- train

test_save <- test

X <- rbind(train_save, test_save)

train <- X[1:14,]

test <- X[15,]

Build the model again and apply it to the test case.

NB_model <- naiveBayes(Class ~ ., data = train)

pred <- predict(NB_model, test, type = "raw")

pred

normal tumor unknown

16

[1,] NaN NaN NaN

#’ We have to make sure that our test case has a class label that also appears in

#’ the training set, so we can just choose either "normal" or "tumor".

#’ It does not matter which one we choose, and it has no influence

#’ on predict() because predict() uses only the predictor variables

test$Class <- "normal"

X <- rbind(train_save, test)

train <- X[1:14,]

test <- X[15,]

Build the model again and apply it to the test case.

NB_model <- naiveBayes(Class ~ ., data = train)

pred <- predict(NB_model, test, type = "raw")

pred

normal tumor

[1,] 0.7954173 0.2045827

When we use naiveBayes(), we have to make sure that the factor levels in the training and test set are

consistent. Also, we need to make sure that data types are correct. Note that the values in Table 3 could

be interpreted as integers, which would of course lead to different results (see the R code at osf.io/gtchm

for more details). Both pitfalls can be easily overlooked and thereby cause naiveBayes() and predict() to

produce results that may look plausible but that are, in fact, incorrect.

4. Discussion

Harold Jeffreys, a pioneer of modern statistics, succinctly stated the importance of Bayes’ theorem:

“[Bayes’ theorem] is to the theory of probability what Pythagoras’ theorem is to geometry.” [21, p.31].

Indeed, Bayes’ theorem is of fundamental importance not only for inferential statistics, but also for machine

learning, as it underpins the naive Bayes classifier. This classifier has demonstrated excellent performance

compared to more sophisticated models in a range of applications, including tumor classification based on

gene expression profiling [22]. The naive Bayes classifier performs remarkably well, even when the underlying

independence assumption is violated, and it is based on sound mathematical theory. What makes the naive

Bayes classifier particularly interesting is that it can deal efficiently with missing values and mixed variables,

such as numeric and categorical features.

It is well known that the misclassification error rate is minimized if each instance is classified as a member

of that class for which its conditional class posterior probability is maximal [18]. Consequently, the naive

Bayes classifier is optimal (cf. Eq. 22), in the sense that no other classifier is expected to achieve a smaller

17

osf.io/gtchm

misclassification error rate, provided that the features are independent. However, this assumption is a rather

strong one; clearly, in the vast majority of real-world classification problems, this assumption is violated.

This is particularly true for genomic data sets with many co-expressed genes. Perhaps surprisingly, however,

the naive Bayes classifier has demonstrated excellent performance even when the data set attributes are not

independent [18, 19].

Another advantage of the naive Bayes classifier is that training is relatively fast, as only class conditional

probabilities and prior probabilities need to be calculated. Moreover, the calculation of the conditional

probabilities is highly parallelizable and amenable to distributed processing, for example, in a MapReduce

environment [20]. Thus, the naive Bayes classifier is also interesting for big data analytics.

The performance of the naive Bayes classifier can often be improved by eliminating highly correlated

features. For example, assume that we add ten additional genes to the data set shown in Table 4, where

each gene is described by expression values that are highly correlated to those of Gene B. This means that

the estimated conditional probabilities will be dominated by those values, which would “swamp out” the

information contained in the remaining genes.

We illustrated some caveats and pitfalls and how to avoid them when building a naive Bayes classifier in

the programming language and environment R [17]. Further details with fully commented code and example

data are available at the accompanying website http://osf.io/92mes.

References

[1] D. Berry, Statistics—A Bayesian Perspective, Duxbury Press, 1996.

[2] D. D. Lewis, Naive (Bayes) at forty: the independence assumption in information retrieval, in:

C. Nédellec, C. Rouveirol (Eds.), Machine Learning: ECML-98: 10th European Conference on Ma-

chine Learning, Chemnitz, Germany, April 21–23, Springer, Berlin/Heidelberg, 1998, pp. 4–15.

[3] J. Berger, M. Delampady, Testing precise hypotheses, Statistical Science 2 (3) (1987) 317–352.

[4] D. Berrar, Confidence curves: an alternative to null hypothesis significance testing for the comparison

of classifiers, Machine Learning 106 (6) (2017) 911–949.

[5] D. Berrar, W. Dubitzky, On the Jeffreys-Lindley Paradox and the looming reproducibility crisis in

machine learning, in: Proceedings of the 4th IEEE International Conference on Data Science and

Advanced Analytics, Tokyo, Japan, 19–21 October 2017, 2017, pp. 1–7.

[6] D. Berrar, Using p-values for the comparison of classifiers: pitfalls and alternatives, Data Mining and

Knowledge Discovery 36 (3) (2022) 1102–1139

[7] D. Berrar, Bayes’ theorem and naive Bayes classifier, in: S. Ranganathan, K. Nakai, C. Schönbach,

M. Gribskov (Eds.), Encyclopedia of Bioinformatics and Computational Biology, 1st edition, Elsevier,

2018, pp. 403–412.

18

http://osf.io/92mes

[8] T. Sellke, M. Bayarri, J. Berger, Calibration of p values for testing precise null hypotheses, The American

Statistician 55 (1) (2001) 62–71.

[9] R. Kass, A. Raftery, Bayes factors, Journal of the American Statistical Association 90 (430) (1995)

773–795.

[10] H. Jeffreys, Theory of Probability, Clarendon Press, Oxford, 3rd edition, reprinted 2003, Appendix B,

p.432, 1961.

[11] D. Berrar, An empirical evaluation of ranking measures with respect to robustness to noise, Journal of

Artificial Intelligence Research 49 (2014) 241–267.

[12] D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to

avoid them), Briefings in Bioinformatics 13 (1) (2012) 83–97.

[13] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, USA, 2nd edition, 2001.

[14] G. Gigerenzer, W. Gaissmaier, E. Kurz-Milcke, L. Schwartz, S. Woloshin, Helping doctors and patients

to make sense of health statistics, Psychological Science in the Public Interest 8 (2) (2008) 53–96.

[15] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kauf-

mann, 2nd edition, 2005.

[16] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, e1071: Misc Functions of the Department

of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, R package version 1.6-7 (2015).

URL https://CRAN.R-project.org/package=e1071

[17] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical

Computing, Vienna, Austria (2017).

URL https://www.R-project.org/

[18] P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss,

Machine Learning 29 (2) (1997) 103–130.

[19] N. A. Zaidi, J. Cerquides, M. J. Carman, G. I. Webb, Alleviating naive Bayes attribute independence

assumption by attribute weighting, Journal of Machine Learning Research 14 (2013) 1947–1988.

[20] S. Villa, M. Rossetti, Learning continuous time Bayesian network classifiers using MapReduce, Journal

of Statistical Software 62 (3) (2014) 1–25.

[21] H. Jeffreys, Scientific Inference, Cambridge University Press, 3rd edition, 1973.

[22] S. Dudoit, J. Fridlyand, T. Speed, Comparison of discrimination methods for the classification of tumors

using gene expression data, Journal of the American Statistical Association 97 (457) (2002) 77–87.

19

https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://www.R-project.org/
https://www.R-project.org/

	Introduction
	Fundamentals
	Basic Notation and Concepts
	Total Probability Theorem
	Bayes' Theorem
	Naive Bayes Classifier

	Examples
	Application of Bayes' Theorem in Medical Screening
	Naive Bayes Classifier – Introductory Example
	Laplace Smoothing
	Mixed Variables
	Missing Value Imputation
	Optimality of the Naive Bayes Classifier
	R Implementation

	Discussion

