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Abstract

The bootstrap is a computationally intensive data resampling methodology for assessing the accuracy of

statistical estimates and for making inferences about unknown population parameters. This article provides

an introduction to the ordinary non-parametric bootstrap, with a focus on two applications that are of par-

ticular relevance to bioinformatics: bootstrap confidence intervals and bootstrap error estimates of predictive

performance.
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Key points

• This article explains the fundamental principles of bootstrapping, from sampling

distributions to the .632+ bootstrap.

• Bootstrap confidence intervals and bootstrap error estimates of the predictive per-

formance are covered as well.

1. Introduction

The bootstrap is a computationally intensive data resampling methodology for assessing the accuracy of

statistical estimates and for making statistical inferences about unknown population parameters [2, 3, 5, 6,

7, 8]. A central question of inferential statistics is the following: how accurate is the sample statistic θ̂ as

an estimator for an unknown population parameter θ? The key to this question is the sampling distribution

of θ̂. Suppose that we are interested in the population mean, µ. It is well known that the sample mean,

1This article is the revised version of [1] for the 2nd edition of the Encyclopedia of Bioinformatics and Computational
Biology, Elsevier.
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x̄, is the best point estimate for µ, and its sampling distribution can be analytically derived. However, for

more intricate statistics (for example, performance measures of predictive models, such as the area under

the receiver operating characteristic curve, AUC), it may be very difficult or even impossible to find the

theoretical sampling distribution. Here, the bootstrap provides a solution.

In theory, to obtain the sampling distribution of a statistic of interest, we would need to draw all or

infinitely many random samples from the population and compute the statistic for each sample. In practice,

we (usually) have only one sample from the population. At the heart of the bootstrap is the idea that the

available sample is a good estimate of the population of interest. So instead of drawing random samples

from the population, we draw random samples from our estimate. These “samples from a sample” are

called bootstrap sets or bootstrap samples. From each bootstrap sample, we then compute our statistic of

interest. The spread and the shape of the distribution of these bootstrap statistics tell us something about

the sampling distribution of the sample statistic, which provides useful information for making inferences

about the population parameter. Now the etymological roots of the methodology also become clear: the

name is derived from the phrase “to pull oneself up by one’s own bootstrap,” which implies that a thing

is being built by using the thing itself—by drawing samples from the sample, we are building a bootstrap

distribution.

Without specific assumptions or a particular model for the population under investigation, the bootstrap

is called non-parametric; otherwise, it is called parametric [9]. Like random permutation methods and the

jackknife [4], the bootstrap belongs to the family of Monte Carlo resampling methods [10]. Essentially,

these methods differ with respect to how the sampling is done. Both the jackknife and random permutation

methods perform sampling without replacement, whereas sampling is done with replacement in the bootstrap.

This article provides an introduction to the ordinary non-parametric bootstrap, which is the most fun-

damental type. Here, we consider only the case that the population parameter and sample statistic are a

scalars. The focus is on the key ideas and two applications that are particularly relevant for bioinformatics:

how to derive basic bootstrap confidence intervals, and how to assess the prediction error of a statistical

model (for example, a classifier). For more theoretical details, see [5, 7, 11]. For an excellent discussion of

the role of the bootstrap in statistics education, see [12].

1.1. Basic concepts and notation

We begin with some basic terms, which largely follow the standard statistical notation [8]. Greek lower case

letters usually denote population parameters, for example, µ denotes the population mean. Roman upper

case letters, such as X, usually denote sample statistics. For instance, X = xi means that X assumes a

particular value xi. The exception is N , which refers to the population size. E(X) denotes the expected

value or mean of X.

The probability distribution of X is called sampling distribution of X. The probability that a real-valued

random variable X is smaller than, or equal to, a particular value x0 is denoted by P (X ≤ x0) = FX(x0),
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which is called the cumulative distribution function (CDF) of X. The unknown parameter of interest is

commonly denoted by θ, which could represent the mean or any other parameter. The symbol ˆ indicates

an estimate. For example, the sample statistic θ̂ is an estimate for θ; therefore, θ̂ is also called the estimator

and θ is called the estimand. The standard deviation of the sampling distribution of the sample statistic θ̂

is called the standard error of θ̂. Finally, the symbol ∗ indicates a bootstrap statistic.

Note that in frequentist statistics, a parameter has a fixed but (usually) unknown value and is therefore a

constant. By contrast, a sample statistic is a random variable because it depends on the random makeup of

the sample from which it was calculated. In the frequentist paradigm, sample statistics are random variables,

and consequently, they have a sampling distribution; parameters, on the other hand, do not, since they are

not random variables.

1.2. Sampling distribution of a sample statistic

Let us assume that we have a data set D, which is a random sample from the population of interest. The data

set has n elements, x1, x2, ..., xn. We will assume that the elements in our random sample are the real-valued

outcomes of independent and identically distributed (iid) random variables X1, X2, ..., Xn. The probability

density function (PDF) of these random variables is denoted by f , and their cumulative distribution function

is denoted by F . Both f and F are characteristics of the population and therefore unknown, just like the

population parameter that we are interested in. We use the sample to make inferences about the unknown

population parameter θ by calculating the statistic θ̂ from the sample data.

The population parameter can be thought of as a function of the population data, i.e., θ = t(x), where x

denotes the population data and t(·) is a statistical function. This function tells us how to calculate θ from

the data. For instance, let us assume that θ denotes the population mean, µ, and let us assume that the

population elements are countably finite. Then µ = t(x) = 1
N

∑N
i=1 xi, where N is the number of elements in

the population. The same statistical function may be used to calculate the sample statistic, θ̂ = t(x), where

x now denotes the sample data. For example, the sample mean is calculated as x̄ = t(x) = 1
n

∑n
i=1 xi, where

n is the number of elements in the sample. In non-parametric analysis, the empirical distribution function

(EDF), denoted by F̂ , is an estimate of the cumulative distribution function, F . Many simple statistics can

be regarded as properties of the empirical distribution function [8]. For example, let us consider the discrete

case, where each xi has the probability 1
n of being sampled. The sample mean, x̄, is the same as the mean

of the empirical distribution function, F̂ ,

F̂(x) =
1

n

n∑
i=1

H(x− xi), with (1)

H(u) =

1, if u ≥ 0

0, otherwise
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where H(·) is the Heaviside function. Both the population parameter and the sample statistic can be

expressed as a function of their underlying distribution functions: θ = t(F) and θ̂ = t(F̂). The reason is

that the parameter can be considered a characteristic of the population, which is described by its cumulative

distribution function, F . Similarly, the value of the sample statistic is a function of the empirical distribution

of the sample elements, F̂ . Not all estimators, however, are exactly of the form θ̂ = t(F̂) [8]; for example,

the unbiased sample variance is n
n−1 t(F̂). More precisely, therefore, it should be stated that θ̂ = tn(F̂) and

tn → t as n→∞. Here, we will ignore this detail, as it is irrelevant for the explanation of the non-parametric

bootstrap.

Figure 1: Random sampling from a population with unknown parameter θ. The sample statistic θ̂ is the estimator for the

parameter (i.e., the estimand). Both the statistic and the parameter depend on their underlying distribution functions F̂ and

F , respectively.

The idea of random sampling from a population is illustrated in Figure 1. As we have seen, the sample

statistic, θ̂, can be thought of as a function of the empirical distribution, F̂ , of the data in that particular

sample. Clearly, if we drew another random sample, then most certainly we would obtain a slightly different

value of θ̂. This idea is illustrated by θ̂2 and θ̂k in Figure 1. Assume that t(·) is the function for the arithmetic

mean. It is plausible that sometimes, θ̂ = X̄ is a bit larger than θ = µ, sometimes a bit smaller, but on

average, the sample mean and the population mean are the same. In fact, it can be proved that the expected

value of the sample mean is the population mean, i.e., E(X̄) = µ.

Two characteristics of an estimator are its bias, β, and variance, σ2
θ̂
. The bias is the systematic error,

i.e., the difference between the estimator’s expected value, E(θ̂), and the true value of the estimand, θ, i.e.,

β = E(θ̂) − θ. An estimator is said to be unbiased if its bias is zero. Hence, the sample mean X̄ is an

unbiased estimator of µ.

Consider a sample statistic θ̂ with mean µθ̂ = θ + β and standard deviation σθ̂, and assume that θ̂ is

normally distributed, θ̂ ∼ N (µθ̂, σ
2
θ̂
). The probability that θ̂ takes on a value smaller than, or equal to, a

particular value θ̂0 is
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P (θ̂ ≤ θ̂0) = Φ

(
θ̂0 − µθ̂
σθ̂

)
= Φ

(
θ̂0 − (θ + β)

σθ̂

)
(2)

where Φ(·) denotes the standard normal cumulative distribution function. Furthermore,

P
(

(θ + β)− z1−α2 · σθ̂ ≤ θ̂ ≤ (θ + β) + z1−α2 · σθ̂
)

= 1− α (3)

where z1−α2 = Φ−1(1 − α
2 ) is the quantile of the standard normal distribution for probability 1 − α

2 .

For example, if α = 0.05, then z0.975 = 1.96. Rearranging Eq. 3 leads to the following identity2 for the

population parameter θ,

P
(

(θ̂ − β)− z1−α2 · σθ̂ ≤ θ ≤ (θ̂ − β) + z1−α2 · σθ̂
)

= 1− α (4)

For example, let θ̂ be the sample mean, X̄. It is well known that the sampling distribution of the

sample mean is a normal distribution with mean µX̄ = E(X̄) = µ and standard deviation σX̄ = σ√
n

, if the

population has a normal distribution (with standard deviation σ) or if the sample size is sufficiently large

(usually, n ≥ 30) (cf. Figure 2). The sample mean is an unbiased estimator of the population mean, as

β = E(X̄)− µ = µ− µ = 0. A (1− α) · 100% confidence interval for the population mean µ is now given by

x̄± z1−α2 ·
σ√
n

(5)

In practice, the population standard deviation is usually not known, and the confidence interval is cal-

culated based on Student’s t-distribution. The Student-t confidence interval for the population mean is

calculated as

x̄± tν,1−α2 ·
s√
n

(6)

where tν,1−α2 is the quantile of the t-distribution with ν degrees of freedom, with ν = n − 1, and

s =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation.

So if we know the bias and variance of the sample statistic, then we can make inferences about the

population parameter. For the sample mean, this is no problem, but what about more intricate statistics?

Let us consider bias and variance as a function of the underlying distribution,

2Eq. 4 should be read carefully. Reading it as “the probability that the parameter θ is between ... and ... is 1 − α” might

invite the misinterpretation that the parameter has a probability distribution. This is not so. The probabilistic interpretation

must refer to the random variable, θ̂.
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Figure 2: (a) Random sampling from a population with unknown mean µ. The estimator for the population mean is the

sample mean, X̄. The sample mean is a random variable and takes on the values x̄i, which depend on the concrete makeup

of the random sample. (b) Sampling distribution of the sample mean, X̄. The distribution is normal, X̄ ∼ N (µ, σ
2

n
), i.e., the

distribution is centered at the population mean, µ. The value z1−α
2

is the quantile of the standard normal distribution for

probability 1− α
2

. For example, z0.975 = 1.96 for α = 0.05.

β = E(θ̂|F)− t(F) (7)

σ2
θ̂

= Var(θ̂|F) (8)

Using F̂ as an estimate for F , we obtain estimates of bias and variance,

β̂ = E(θ̂|F̂)− t(F̂) (9)

σ̂2
θ̂

= Var(θ̂|F̂) (10)

which are called bootstrap estimates [8]. This illustrates the plug-in principle [12] of the bootstrap: when

something is unknown, an estimate is plugged in instead.

2. Ordinary non-parametric bootstrap

The ordinary non-parametric bootstrap procedure can be described as follows:

1. The available data set D is assumed to be a representative sample from the population of interest.

This data set contains a total of n elements, x1, x2, ..., xn.

2. From D, calculate the statistic θ̂, which is the estimate for the population parameter, θ.

3. Generate a bootstrap set, B, by randomly sampling n instances with replacement from D. The

sampling is uniform, which means that each of the n elements in D has the same probability, 1
n , of
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being selected.3

4. Repeat step (3) b times to generate b bootstrap sets, B1, B2, ..., Bb (cf. Figure 3).

5. Calculate the statistic θ̂∗i from the ith bootstrap set Bi.

6. Repeat step (5) for all b bootstrap sets.

From a data set with n elements, we could theoretically generate
(

2n−1
n

)
distinct bootstrap sets. If n is

not too large, we could perform an exhaustive bootstrap by constructing all possible sets instead of random

sampling. This approach is also referred to as the theoretical bootstrap [12]. In practice, however, n is usually

too large, and we generate several hundreds or thousands of bootstrap samples. This approach is an example

of Monte Carlo sampling. Hesterberg suggests b = 1000 for a rough approximation and b ≥ 10 000 for more

accuracy [12].

Figure 3: Ordinary non-parametric bootstrap. The available data set (i.e., original sample) is repeatedly sampled (with

replacement) to generate b bootstrap sets Bi, i = 1..b. Each bootstrap set has the same number of elements, n, as the original

data set D. Because of the sampling with replacement, some elements can occur more than once in one bootstrap set, while

others do not occur at all.

After the described procedure, we obtain the empirical or bootstrap distribution of all θ̂∗i , from which we

can infer the bootstrap cumulative distribution function, F̂∗. The mean, bias, and variance of θ̂∗ are:

¯̂
θ∗ =

1

b

b∑
i=1

θ̂∗i (11)

bias{θ̂∗} = E(θ̂∗i )− θ̂ =
¯̂
θ∗ − θ̂ (12)

σ̂2
θ̂∗

=
1

b− 1

b∑
i=1

(
θ̂∗i −

¯̂
θ∗
)2

(13)

It is important to note that the bootstrap distribution is centered at the observed statistic, θ̂, not at the

population parameter, θ. Our best estimate for the population parameter (say, the mean µ) is therefore still

3More intricate sampling approaches, such as sampling with noise, are beyond the scope of this article.
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Figure 4: (a) An example of a population of interest, consisting of N = 1000 instances xi from a normal mixture of two

distributions, N1(0, 4) and N2(6, 1). The population mean and standard deviation are µ = 3 and σ = 3.37, respectively. (b)

The sampling distribution of the sample mean is normal, with mean µX̄ = µ and standard deviation σX̄ = σ√
n

= 0.57. (c) A

random sample of n = 35 instances from the population. The sample mean is x̄ = 2.5 and the standard deviation is s = 3.72.

(d) Bootstrap (empirical) distribution of the bootstrap estimate X̄∗ based on b = 10 000 bootstrap sets sampled from the data

in (c). The bootstrap distribution has mean µX̄∗ = x̄ = 2.5 and standard deviation σX̄∗ = 0.62.

our original sample statistic (i.e., x̄ for µ), not the average of all bootstrap estimates,
¯̂
θ∗. As the bootstrap

distribution is not centered at the population parameter, the quantiles of the bootstrap distribution are

usually different from the quantiles of the theoretical sampling distribution of the sample statistic, θ̂. This

means that the bootstrap quantiles are not meaningful estimates for the quantiles of θ̂. However, the

bootstrap quantiles are useful to estimate the quantiles and CDF of θ̂ − θ and to estimate the standard

deviation of θ̂. This idea is illustrated in Figure 4 using the sample mean X̄ as an example. Note that in

Figure 4d, the standard deviation of the bootstrap statistic is only slightly larger than the standard deviation

of the theoretical sampling distribution of the sample statistic. The example in Figure 4 is just an illustration

of the principle of bootstrapping. For the sample mean, the bootstrap is actually not needed because we

already know the theoretical sampling distribution of θ̂. For many other statistics, however, that is not the

case.
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3. Fundamental bootstrap confidence intervals

We now describe three fundamental bootstrap confidence intervals: the bootstrap percentile interval, the

reverse bootstrap percentile interval or basic bootstrap interval, and the bootstrap-t interval [7]. More advanced

intervals are described in [6, 13].

3.1. Bootstrap percentile confidence interval

The bootstrap percentile confidence interval is arguably the simplest and most intuitive bootstrap interval.

It is derived as follows.

1. Generate b bootstrap sets by repeatedly sampling with replacement from the available data set (i.e.,

original sample) D. For each bootstrap sample Bi, calculate the sample statistic θ̂∗i .

2. Find the α
2 and 1− α

2 quantiles of the distribution of θ̂∗i . These quantiles are denoted by θ̂∗α
2

and θ̂∗1−α2
,

respectively.4

3. A (1− α) · 100% bootstrap percentile confidence interval for θ is given by[
θ̂∗α

2
, θ̂∗1−α2

]
(14)

Figure 5 shows the rug plot of the bootstrapped statistic θ̂∗ = X̄∗ from Figure 4d. The 95% bootstrap

percentile interval for the population mean θ = µ is given by [1.238, 3.696].

0 1 2 3 42.5

Figure 5: Rug plot of the bootstrapped statistic θ̂∗ = X̄∗ from Figure 4d. The 9500 marks between the 2.5% and 97.5%

quantiles are so close to each other that they appear as a solid black band, which represents the 95% percentile confidence

interval for the population mean.

The advantage of the bootstrap percentile interval is clearly its simplicity. It can also be calculated for

almost any statistic of interest. However, it provides no advantage over the Student’s t-interval for the mean

of small samples [12]. Although the bootstrap t-interval tends to be better suited to skewed population

distributions, it is also less accurate for small samples.

4In R, the function quantile(Y, c(0.025, 0.975)) gives the 2.5% and 97.5% percentile for the data in Y.
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3.2. Reverse bootstrap percentile confidence interval

This interval is also known as the basic bootstrap confidence interval [8, 12]. Like the percentile interval, it is

based on the quantiles of the bootstrap statistic, θ̂∗. Let θ̂ denote the sample statistic, that is, the estimate of

the population parameter θ. The reverse bootstrap percentile interval assumes that the difference δ̂ = θ̂− θ

can be approximated by the bootstrapped difference δ̂∗ = θ̂∗ − θ̂. Let θ̂∗α
2

and θ̂∗1−α2
denote again the 1

2α

and 1 − 1
2α quantiles of the bootstrap distribution, respectively. Then a (1 − α) · 100% reverse bootstrap

percentile confidence interval for the parameter θ is given by

[
2θ̂ − θ̂∗1−α2 , 2θ̂ − θ̂∗α

2

]
(15)

This interval is derived as follows:

1− α = P
(
θ̂∗α

2
≤ θ̂∗ ≤ θ̂∗1−α2

)

= P
(
−θ̂ + θ̂∗α

2
≤ θ̂∗ − θ̂ ≤ −θ̂ + θ̂∗1−α2

)

≈ P
(
−θ̂ + θ̂∗α

2
≤ θ̂ − θ ≤ −θ̂ + θ̂∗1−α2

)

= P
(
−2θ̂ + θ̂∗α

2
≤ −θ ≤ −2θ̂ + θ̂∗1−α2

)

= P
(

2θ̂ − θ̂∗1−α2 ≤ θ ≤ 2θ̂ − θ̂∗α
2

)
3.3. Bootstrap-t confidence interval

The bootstrap-t interval is constructed as follows.

1. Draw b bootstrap samples by repeatedly sampling with replacement from the available data set D. For

each bootstrap sample Bi, calculate the statistic

T ∗i =
θ̂∗i − θ̂
ŜE
∗
i

(16)

where ŜE
∗
i is the estimate of the standard error of θ̂∗ based on the data in Bi. This estimate is

calculated as the standard deviation of all values in Bi divided by the square root of the sample size,

ŜE
∗
i =

σ̂∗
i√
n

. The random variable T ∗i is called an approximate pivot [7].

2. Find the α
2 and 1 − α

2 quantiles of the distribution of T ∗i . Denote these quantiles by t̂∗α
2

and t̂∗1−α2
,

respectively.
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3. A (1− α) · 100% bootstrap-t interval for the parameter θ is given by[
θ̂ − t̂∗1−α2 ·

s√
n
, θ̂ − t̂∗α

2
· s√

n

]
(17)

where s denotes again the standard deviation of the sample (i.e., the original data set D) and s√
n

is

the standard error, SEθ̂, of the sample statistic.

Eq. 17 is derived as follows. Consider a statistic T that follows a t-distribution,

T =
θ̂ − θ
SEθ̂

∼ t (18)

Let tα/2 and t1−α/2 denote the α/2 and 1− α/2 quantiles, respectively. Then

1− α = P

(
tα/2 ≤

θ̂ − θ
SEθ̂

≤ t1−α/2

)

= P
(
tα/2 · SEθ̂ ≤ θ̂ − θ ≤ t1−α/2 · SEθ̂

)

= P
(
−θ̂ + tα/2 · SEθ̂ ≤ −θ ≤ −θ̂ + t1−α/2 · SEθ̂

)

= P
(
θ̂ − t1−α/2 · SEθ̂ ≤ θ ≤ θ̂ − tα/2 · SEθ̂

)

Assuming that the bootstrap statistic T ∗ has approximately the same distribution as T , we can replace

the quantiles by the bootstrapped quantiles to obtain

1− α ≈ P
(
θ̂ − t∗1−α/2 · SEθ̂ ≤ θ ≤ θ̂ − t

∗
α/2 · SEθ̂

)
which is the bootstrap-t interval of Eq. 17. Thus, Eq. 17 is similar to the common Student-t interval, except

that the t-value is substituted by the bootstrap estimates t̂∗α
2

and t̂∗1−α2
. These estimates are not necessarily

symmetric about 0, in contrast to the percentiles of the standard normal and t-distribution. Whereas the

common z- and t- intervals are always symmetric around θ̂, bootstrap-t intervals (and bootstrap percentile

intervals) are not necessarily symmetric.

It may be surprising that Eq. 17 does not include a term for the bias (cf. Eq. 4). Indeed, we could

calculate a bias-corrected estimate as θ̂ − bias{θ̂∗} = θ̂ − (
¯̂
θ∗ − θ̂) = 2θ̂ − ¯̂

θ∗. However, bias estimates can

have a high variability [7, 12], so it is not advisable to perform this correction.

Table 1 shows the two bootstrap 95% confidence intervals for the population mean µ of the example

population (Figure 4a). For comparison, the common z- and t-intervals are also shown.
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Table 1: 95% confidence intervals for the population mean based on the random sample in Figure 4a.

Method 95% confidence interval Width

Normal-z interval [1.387, 3.617] 2.230

Approximate normal-z interval (using s instead of σ) [1.270, 3.734] 2.464

Student-t interval [1.224, 3.780] 2.556

Bootstrap percentile interval [1.238, 3.696] 2.458

Reverse bootstrap percentile interval [1.315, 3.737] 2.422

Bootstrap-t interval [1.184, 3.769] 2.585

Figure 6 shows the upper and lower limits of all six 95%-confidence intervals from Table 1.

4

3

2

1

0

Figure 6: Upper and lower limits of the six 95% confidence intervals from Table 1; from left to right: normal-z interval (black),

approximate normal-z interval (green), Student-t interval (blue), bootstrap percentile interval (magenta), reverse bootstrap

percentile interval (gray), and bootstrap-t interval (brown).

For the example data in Figure 4, n = 35 seems to be sufficient for a reliable bootstrap confidence interval.

The width of both bootstrap intervals is comparable to that of the Student-t interval. The z-interval is of

course the most accurate interval in this example because it uses the population standard deviation, σ. For

real-world data sets, however, it is usually not possible to derive a z-interval, as σ is almost never known.

When we use the sample standard deviation, s, as an estimate for σ, then the resulting approximate 95% is

even slightly wider than the bootstrap percentile interval.

Both the bootstrap-t interval and the bootstrap percentile interval are only first-order accurate, which

means that the actual one-sided coverage probabilities differ from the nominal values by O( 1√
n

). Hence, both

intervals tend to be too narrow for small n [12]. For small sample sizes, the bootstrap intervals offer therefore

no improvement over the Student-t interval. On the other hand, when n is large, bootstrap intervals usually

perform better, particularly for skewed distributions [12]. The reason is that common confidence intervals

based on the standard normal and t-distribution are symmetric about zero, whereas bootstrap percentile

intervals and bootstrap-t intervals may be asymmetric, which can improve coverage [7]. In fact, the Student-
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t interval was shown to be surprisingly inaccurate when the population distribution is skewed, even if the

sample size is much larger than 30 [14]. For large samples from skewed populations, bootstrap-t intervals

tend to have a better coverage than the Student-t intervals and are therefore preferable. The bootstrap-t

interval is particularly suitable to location statistics, such as the mean or median [7].

When the bootstrap distribution is approximately normal and the bias is small, the bootstrap-t interval

and the percentile bootstrap interval will agree closely. If that is not the case, Hesterberg et al. caution

against the use of either interval [15].

4. Bootstrap estimates of prediction error

When only one data set is available to develop and test a statistical model (for example, a classifier or

regression model), the bootstrap is an effective technique to estimate the true prediction error [9]. This true

prediction error represents the unknown population parameter. Let us assume that a data set D contains n

instances (or cases) xi, i = 1..n, and each instance is described by a set of p features, xi = (xi1, xi2, ..., xip).

Let us further assume that with each instance, exactly one target label yi is associated. In the case of

classification, yi is a discrete class label, yi ∈ {y1, y2, ..., yk}, where k indicates the number of distinct classes.

In the case of regression, the target is a real value, yi ∈ R. A statistical model f(·) estimates the target yi

of the case xi as f(xi) = ŷi. The estimation error is quantified by a loss function, L(yi, ŷi). For example, in

the case of classification and the 0-1 loss function, the loss is 1 if yi 6= ŷi and 0 otherwise. In the case of a

regression problem, the loss function generally involves a form of squared error. The bootstrap estimate of

the prediction error is calculated as follows.

1. Generate b bootstrap sets Bj , j = 1..b, by repeatedly sampling (with replacement) n cases from D.

2. Use the bootstrap set Bj as training set to build the model f∗j .

3. Calculate f∗j (xi) = ŷi, and then compute the loss function L(yi, f
∗
j (xi)).

4. The bootstrap estimate of the prediction error, ε̂∗, is the average over all cases and all bootstrap sets,

ε̂∗ =
1

n

n∑
i=1

1

b

b∑
j=1

L(yi, f
∗
j (xi)) (19)

As the training sets Bj partially overlap with D, the error estimate ε̂∗ is biased downward, which means

that it is smaller than the true prediction error. A simple approach to alleviate the optimistic bias is to

exclude those cases from the evaluation that served already as training cases. Let S−i denote the set of

indices of the bootstrap samples that do not contain the case xi, and let |S−i| denote the number of these

indices. The leave-one-out bootstrap estimate, ε̂∗loob, is defined as follows [16].

ε̂∗loob =
1

n

n∑
i=1

1

|S−i|
∑
j∈S−i

L(yi, f̂
∗
j (xi)) (20)
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It is possible that all bootstrap samples contain the case xi, and consequently that |S−i| = 0. To avoid

a division by zero, the number of bootstrap samples, b, has to be sufficiently large to ensure that at least

one of them does not contain xi, or those cases that appear in all bootstrap samples should be omitted from

Eq. 20.

The leave-one-out bootstrap estimate tends to overestimate the true prediction error; in other words, it

has an upward bias. The reason is that the model is trained on only a subset of the available data because

each bootstrap sample contains, on average, only about 63% of the data: the probability that a case xi

is selected for a bootstrap set in one random sampling is 1
n , and the probability of not being selected is

therefore 1 − 1
n . When the sampling is done n times, the probability that the case is not selected at all

is (1 − 1
n )n. Consequently, the probability that it is selected is 1 − (1 − 1

n )n. Note that (1 − 1
n )n → e−1

for n → ∞. Therefore, for sufficiently large n, the probability that a case xi appears in a bootstrap set is

approximately 1− e−1 = 0.632. This means that each bootstrap set has, on average, about 63% of distinct

cases only—so about 37% of the available data are not used for training, which results in an overestimation

of the prediction error. This overestimation can be corrected by considering the resubstitution error. The

bootstrap resubstitution error is defined as follows [16].

ε̂∗resub =
1

n

n∑
i=1

1

|S+i|
∑
j∈S+i

L(yi, f̂
∗
j (xi)) (21)

where S+i is the set of bootstrap set indices that contain the case xi.
5 The resubstitution error is also

referred to as the training error. It has a downward bias, which means that it underestimates the true

prediction error.

Figure 7 illustrates the relation between the leave-one-out error and the resubstitution error. From a

data set with n = 10 cases, three bootstrap samples are randomly drawn. Here, only the case indices are

shown. A model f∗ is fitted on each sample. Consider now the contribution of case #1 to the leave-one-out

bootstrap estimate: only the prediction of f∗1 is relevant, since it is fitted on the bootstrap sample that does

not include case #1. By contrast, to calculate the contribution of case #1 to the resubstitution error, only

the predictions of f∗2 and f∗3 are relevant, because these models were fitted on samples that do contain case

#1.

5. The .632 bootstrap error and the .632+ bootstrap error

The .632 bootstrap error, ε̂∗.632, is a weighted average between the overly optimistic resubstitution error and

the overly pessimistic leave-one-out bootstrap error,

ε̂∗.632 = 0.368 · ε̂∗resub + 0.632 · ε̂∗loob (22)

5Suppose that the case x3 occurs in the second bootstrap sample four times. The prediction f̂∗2 (x3) = ŷ3 should be considered

in Equation 21 only once, not four times, to give an equal weighting to all bootstrap samples that contain this case.
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Figure 7: Simplified example of a data set of 10 cases and 3 bootstrap samples. The models f∗1 , f∗2 , and f∗3 are fitted on the

respective samples. Cases are represented by their indices.

The error estimate ε̂∗.632 still has a downward bias [17], which the .632+ bootstrap corrects by adjusting

the weights for the resubstitution error and leave-one-out bootstrap error,

ε̂∗.632+ = (1− w) · ε̂∗resub + w · ε̂∗loob, with (23)

w =
0.632

1− 0.368R̂
(24)

R̂ =
ε̂∗loob − ε̂∗resub

ε̂random − ε̂∗resub
(25)

The quantity ε̂random in Eq. 25 is an estimate of the no-information error rate, i.e., the expected error

when the cases (more precisely, the attributes or features describing the cases) are statistically independent

of their labels. R̂ is a measure of the relative overfitting rate, which ranges from 0 if ε̂∗loob = ε̂∗resub (i.e., there

is no overfitting) to 1 if ε̂∗loob = ε̂random. The weight w ranges from 0.632 (if R̂ = 0) to 1 (if R̂ = 1), and

consequently, ε̂∗.632+ ranges from ε̂∗.632 to ε̂∗loob. Hence, the weights in the .632+ bootstrap error are not fixed,

but they depend on the estimated degree of overfitting.

6. Discussion

The bootstrap is a powerful methodology that allows statistical inferences for a wide range of problems

that are extremely difficult or even impossible to tackle by other means. The bootstrap therefore plays an

important role in the sciences, both in research and education.

The bootstrap is an extremely versatile methodology for statistical inference. It can be applied to

problems that are intractable for standard approaches. For example, consider the problem of assessing the

discriminatory power of a classification model based on genomic profiling. Typically, only a relatively small

15



data set is available for both training and testing the model. The observed classification performance may

be measured by balanced accuracy, area under the ROC curve, or any other metric that is deemed suitable

for the problem at hand. But the observed performance value is only an estimate of the true discriminatory

power for new, unseen cases from the same population. How accurate is this estimate? The bootstrap

enables us to address this question.

The bootstrap is not the only data resampling methodology for this purpose, though. Molinaro et al.

compared different resampling techniques for estimating the prediction error in the context of the small-n-

large-p problem, i.e., in problems where the number of cases (n) is much smaller than the number of features

(p) [18]. Such problems are not at all uncommon in the life sciences, for example, in classification studies

involving gene expression data. The bias of the .632+ bootstrap was found to be comparable to that of

leave-one-out cross-validation and 10-fold cross-validation [18, 19]. According to Isaksson et al., however,

both cross-validation and bootstrapping are unreliable for estimating the true prediction error when the data

set is small, and they recommend Bayesian intervals based on a holdout test set [20].

The bootstrap spares us theoretical analysis, but at the expense of considerable computational costs due

to the required repeated sampling. On the other hand, computational costs become increasingly negligible

with the availability of relatively cheap computing power. Most statistical software tools nowadays include

functions for bootstrapping; for example, the widely used language and environment R [21] provides the

package boot [22] for parametric and non-parametric bootstrapping. In particular, a variety of bootstrap

confidence intervals can be calculated with the function boot.ci. The R package resample provides various

resampling functions for bootstrapping, jackknifing, and random permutation testing [23].

The bootstrap can also serve as a useful teaching tool in introductory statistics courses [12]. Concepts

such as repeated random sampling, standard errors, etc. might be explained in a more accessible way if the

instructor complements statistical theory and formulas with histograms of sampling distributions.

At the heart of the bootstrap is the idea that the available data set is an estimate of the population

of interest, and that we can repeatedly take random samples from that estimate. But if the available data

set is too small, it is unlikely to be a good estimate. Researchers need to keep in mind that no amount of

resampling will ever be a panacea for the lack of data. Also, error estimates based on resampling are no

substitute for independent validation studies using new data.
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